
ADOAO95 523 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE--ETC F/9 9/2
FLAVORS: MESSAGE PASSING IN THE LISP MACHINE.(U)

NOV 80 D WEINREB. D MOON N0001-80-C-0505
UNCLASSIFIED AI-M-602 NL

.7D

UNCLASSIFIED
-rLIIPITY CLASSIFICATION OF THIS PAGE (W1hen Pat. Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFOPE COMPLETING FORM

I .' MGEp " 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMRIq

4. TITLE (and Su.btule) 5 ~~OF REPORT & PERIOD COVERED

Flavors: Message Passing in the Lisp Machine* ,Moranum
F 'RE.RFORM I . REP'RT > Ma EJ

7. AUTHOR(.) 4.-G4TRACT OR GRANT NUMBER(s)

Dan e--eb 1Dave/Moon -> bNOt4-80-C-0505, Dan e einre /M....

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Artificial Intelligence Laboratory AREAQ WORK UNIT NUMBERS

-545 Technology Square
Cambridge, Massachusetts 02139

II. CONTROLLING OFFICE NAME AND ADDRESS - 12. --P "OWTDATE

Advanced Research Projects Agency / November-1980

C' 1400 Wilson Blvd u. 13. Tr OrPAG -
Arlington, Virginia 22209 35

14. MONITORING AGENCY NAME & ADDRESS(II diflerent from Controlling Office) 15. SECURITY CLASS. (of chi. report,

Office of Naval Research UNCLASSIFIED
Information Systems : -. ,, .,;

Virginia DECLASSIFICATION/ DWNGRADING

Arlington, Vigna22217 - -0 SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report) .

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the ebetrecet fr I,om Repot)

is. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on 'Over&* side it necoeaear tnd Itentify by block numiber)

Message Passing Generic Functions
Actors

o-. Flavor0- Smalitalk

(l 20. ABSTRACT (Continue on reveree aide It neceeu'y and identity by block number)

-The object oriented programming style used in the Smalltalk and Actor
J.&.J languages is available in Lisp Machine Lisp, and used by the Lisp Machine

___I software system. It is used to perform generic operations on objects. Part

U-J of its implementation is simply a convention in procedure calling style;

part is a powerful language feature, called Flavors, for defining abstract

objects. This chapter attempts to explain what programming with objects

and with message passing means, the various means of implementing these in
Lisp Machine Lisp, and when you shoild use them. It assumes no prior

DD FORMi 1473 "OITIONOi INOV6SISOSOLETE UNCLASSIFIED
%.'N 0012-0'14-64601 14/ ~/ /~d~~P' 6 SCURITY CLASIICATION OF THIS PAGE (W..., Dat. nted)

20. cont'd.

"knowledge of any other languages..

Il In r,

t'P

F Ilavors i Tahle of Content,;

Table of Contents

1. Objects, Message Passing, and Flavors . I
1.1 Iintroduction. I
1.2 Objects. I
1.3 Modularity 2
1.4 Generic Operations 5
1.5 Generic Operations in Lisp. 6
1.6 Simple Use of Flavors. 7
1.7 Mixing Flavors. 11
1.8 Flavor Functions. 14
1.9 1l)eflavor Options. 20
1.10 Flavor Families. 23
1.11 Vanilla flavor. 24
1.12 Method Comibination. 25
1.13 Implementation of Flavors 27

1.13.1 Order of Definiion. 28
1. 13.2 Changing a Flavor. 29
1.13.3 Restrictions 29

1.14 Eintities........... 30
1.15 Useful Editor Commands 30

Index. 32

16-iJAN-81I

MASSACHUSETTS INSTITUTE Of TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 602 November. 1)00

Flavors: Message Passing in the Lisp Machine

Daniel Weinreb
David Moon

The object oriented programming style used in the Smalltalk and Actor languages is available in
Lisp Machine Lisp, and used by the Lisp Machine software system. It is used to perform gn,'ri"
operations on objects. Part of its implementation is simply a convention in procedure cll',g*1
style: part is a powerful language feature, called Flavors, for defining abstract objects. Ti,1
chapter attempts to explain what programming with objects and with message pasing mean,. the
various means of implementing these in Lisp Machine Lisp, and when you should u.e them. h
assumes no prior knowledge of any other languages.

This report describes research done at the Artificial Intelligence Laboratory of the Ma%%achu,,: t,
Institute of Technology. Support for the laboratory's artificial intelligence research is provi-.'d
in part by the Advanced Research Projects Agency of the Department of Defense under Of IL e
of Naval Research Contract number N00014-80-C-0505.

Keywords: Flavor, Message Passing, Actor. Smalltalk.

81 2 26 06
-= ' ' __ . . .SL- '- -J - :... . . '

Preface

This memo is intended to become a chapter in the Lisp Machine manual the next time it ,%
published. Since there is a pressing need for documentation on flavors, we are publi.hinjg it
immediately a, a memo. The authors therefore assume that the reader has encountered this 1,...!
while reading the manual. We assume that the reader is familiar with the basics of Lip and Ow
Lisp Machine's dialect in particular: we also make particular references to an example fi-111
section 17.1 in the manual.

Any comments, suggestions, or criticisms will be welcomed. The authors can be reached h.
any of the following communication paths:

ARPA Network mail to BUG-LMMANeMIT-AI

U.S. Mail to
Daniel L. Weinreb or David A. Moon
545 Technology Square
Cambridge, Mass. 02139

Note

This document was edited with the Zmacs and Emacs editors, and formnated by the Boli, t,.. t
justifier. It was printed on the MIT's Dover Printer.

Havors I ObjeL is. iC, I assIt Int '11 Hii!

1. Objects, VMessage Passing, and Flavors

1.1 Introduction

thec object oricnted programmting st~l ticLse.d in tile SitlialltaIK anld .\tol 111IIIlic" (it' l.1giages
is a ail.Iblc in L isp Mlachine I isp. and used by thle I isp Machine sofltare s~m It ts used to
pe rfonrm LWLcric oper anins onl objects. PaXirt L i its im plemtia t iLon is sillIpl. .a CL m~e ntion ill

proced Ul iCcalling style: part' is at pov 1u1 Linii ge leat LIve, L cled II'.I.toi defilning abstract.

ijt. c sTis chapt(Cr attempts to CS p ialitl W i L ~ t IgrL 11111ith il jtt arIL ild %k ithlimess'age
passing inca ns, thle %aii01s i at s ol, 1111 ple Iiln iLlo tlitse ill I isp Ni (it il I i'p. iand %AlleCi n ,Il

shotild USe them. It aSSuis Ilo prior knfoi% ledge (it' ally other Lin glages.

1.2 Objects

WNhen writing at program. it is often conivteicn to mtodel \hait thle prograin dtoes Iit terms of'
0oIijiC0 eocCpILal entities that can be likened to real-wkoild things. Choosing what objects to
pros ide in it programn is very imp~jortant tLL thte proper Lrgatii/It ion of the prograilil. In anl object-
oriented design. specit'iing w"hatl objects exist is thle first task in designing tile s' stem. tit a text
editor, thle objects might he "pieces of text". "pointers into text". and "display \kindows". In an
electrical design systemn, the objects might he "resistors", "capacitors., transistors", "wires", and
"display windows. After specifying what objects there aIe thFetts t h ini to
figuire out what operations canl be perfoirmed onl each object. In the text editor example,
operations on "pieces of text" might include inserting text and deleting text: operations onl
".pointers into text" might include moving forikard and backward: anid opecrations oiii "display
%indows" might include redisplaying the window and changing \Nith which "piece of' text" the
window is associated.

In this moidel. we think of the program as being built around a set of' objects, each of which
has a set of operations that can be perfoirmed on it. More rigorously, the programn defines several
it'jcs oIf object (tile editor above has three types), and it can create many inii anc. oif each type
(that is, there canl he many pieces of' text, many pointers into text. anid nmany wkindows). T(he
program defines at set of types of oibject, and tile operatiotis that can be pertiimined on any (if the
instainces oft each type.

TIhis should not be wholly unfamniliar to the reader., Earlier inl this manual, we saw a few
examples oft this k intd of' prograimming. A simple examiple is dhisembo died Jpropcr1N lists, .;nd the
ftiontiis get. putprop. ind remprop. Itie disembhodied pro perty list is a l pe of' object: you
can ii sta litim lae 'c % t i (cons nil nil) (that is,) \ eva iIat ing ths fot rmi)il IL til create a new

disembodied propert - list): thei e arc thI e operations oiii the object. ntarncl) get. putprop, and
reniprop. Anothter exaimple inl thle manual A as the first examiple Lit the List' of detstruct. whichA
\%.as cialled a ship. def struct atl1itinancal hite inct'i soime Lopc v.1ti ILo5(n this o bject: t ile oiperaitionls
toL iccess its eeents. We cou~ld definie other [tunctions that did iseftil things %ith ships, such as
coimputing their speed. angle of' travel. mntitni, or %hlitt, stopping themn. imis ng themn
elsewhere. and so on.

I)SKAlMMIANAl'iAVOR 55 16-JAN-81

Flaxors 2 Mo il I(%i

In both casess. %C relesent oLD, conclituol object by onia I isp object. Hi I isp object %ke use
fo r the recp reseita itiin haisimnilre. ad ie h is to liii ci I kpl objecs In t.le pr ja pe ra list case,
thle L isp object is it list x% i lI altellnati og lid leak os and il iles, ill thle siap case, the I isp obj ect is
anl ,Ir I 'I hose detils are taken care of h'. defstruct. Ill both cUses. x% e can Siy that the object
keeps trick of'a in mcital!. we- Mu i ch ca111 bV CX11101101 'In aid -Irtd h thle ipe rn-it ions .%i al c
tar thit typ~e of' object. get examine,. thie statc of' a propel t'. it. aind. pUtprop lters it: ship -x
position and ship -get - momentum examine thle state of' ship, and (setl (ship - mass) 5.0) and
(ship -move to 3.0 4.0) alter it.

We hase nov. seen thle esience at, thjeCt-oriented pragr1aluming I nt. eplCltiilI tinjeCt is
modelled by at sinigle I isp obJct. v-liicli btiidles up sotmel staiC inlillatill. Fotr c\C I\ % t)C it
object, there is it set of operations that canl be performied Lt) eXamineC Or alter thle state oft the
object.

1.3 Modularity

Al important benefit oif the object-oriented stsl i,; il 'hit it lends itself' to at piartic uliily siinple
and lucid kind of modularity. If you hame nodular priigilnl ilng cons! rue ts and tech niques
ax ailabile, it bclps and encourages you to write programns that are easy Li) read and uinderstand,
and si) arc more reliable and maintainable. Object-oriented progr~iniming lets a programiner
implement at Useful facility that presents the caller v. ith at set of external interfaces, without
requ ir ing the caller to understand how the internal details of the imuplementatioin v. ark. Ini other
words, a program that calls this facility Call treat thle facility as a black box: thle program knlc, s
w hat the faicility's external interfaces guarantee to do. and that is all it k now N.

For example, at program that uses disembodied propertY lists n - . needs to) knt V tha~t thle
priipcrty list is being maintaiined as at list oif alternating indicators, mil %alutcs: thle piogilulni sImlply
peitonis the operations, passing themII l1Itt id~ gettillLg thitJ IiltIMlS. 1) it. li-~alol
depends, ail thle externial definition of these operationis: it knitv.s tltit 0t it putprops ,i pitpoity.
and doesn't remprop it (01r putprop ovxer it). thena it can do get and l he sure o f getn, Ii ibck the
samte thing it pilt in. 1 lie iimportant thingW abc tt this hiding of' ht dc11V kI1s oft be lilt U!iiICiil.1ti~li
is that some1 one readiin g at p ri gram that uses d'senia odlied pa ipe ra lists- inIed 1i0t C0ICIl 11n1erih ii1WIf
with bow the% ,,e iniplemienled: hie need Only understand v. ht ihe% 1Riitlrtke to tLit). [is saxeCs
the jirtgranmner a lot otf litime. and lets, hlim concentrate Isl' ealt.riies oin undt."Istlidliag (Ile
progr-am hie is wiorking oni. Another gootd thinig iharut this, hidi is that the i iTlie.'siltlitiil oI
property lists could be changed. and thle pliogimn \Siiild cointinuei to in i rk. I'oi examlel. instead
of a list of' alternating clentents. the vt iptiny list cotild. be iimplemniited its *in associaitiotn Wis or it
hash table. Nothing in the calling program inild changef at(all,

The samne is triue (it tile ship examlple. F1 rile C1r is, tueseiid v.1111 J tIlcctiic Oft 01iptlAn11S.
suich &s ship x position, ship y position. ship spneed, mid shipl dlirection: itintl a. lls
these iind looqks .it lheii miist.4is. Wiihctii1 Caiiliai& 1110A ' ilC (id v li~ii tlie% did. Irall O esainle
itme -.hip x position indl ship-Y Position viuciiId~ he dlessir Itointli is defiiied .iwi,intiollv'

by defstruct. w hue ship -speed antd ship -direction i t tild hle [uionms diefircd lN the
imipleirinior of the ship ty pe. Ihe code iiighat look like this:

l)Sl. IMM \NAH *\\OR 55 l(6 J\ N 8

[-'avors 3 odo i I it ty

(defstruct (ship)
ship-x-pos ition
ship-y-position
ship-x -velocity
ship -y--ve Ioci ty
ship-mass)

(defun ship-speed (ship)
(sqrt (+ ('(ship-x-velocity ship) 2)

(~(ship-y-velocity ship) 2))))

(defun ship-direct Dof (ship)
(atan (ship-y-velocity ship)

(ship-x-velocity ship)))

Th'lc caller need not know that thle first two functions were SiRuctL re acccssors and that dhe
second two were Written by hiand and do arithmetic. Those fL'tS Would not bc considered part of
the black box characteristics of thle imnplementation of the ship type. The ship type does not
guarantee which functions will be implemented in which ways: suich aspects are not part of the
contract between ship and its callers. In fact, ship could have been written this way instead:

(defstruct (ship)
ship-x-positian
ship -y-pos ition
shiiIp -speed

ship-direction
ship-mass)

(defun ship-x-velocity (ship)
(* (ship-speed ship) (cos (ship-direction ship))))

(defun ship-y-velocity (ship)
(* (ship-speed ship) (sin (ship-direction ship))))

In this second implementation of the ship type, we have decided to store the velocity in polar
coordinates instead of rectangular coordinates. [his is purely an implementation decision; the
caller has no idea which of the two ways the implementation works, because hie just performs the
operations on the object by calling the appropriate functions.

We have now created our own types of objects, whose implementations are hidden from the
programs that use them. Such types are usually referred to as abs~racti tpes. [he object-oriented
style of programrming can be used to creaute abstract types by hiding the iplementation of the
operatiolns, and simply documenting what the operationfs are defined to do.

Somc more terminology: the quantities being hld by the elemnts of the ship structure aro
referred to as instance variables. FAch instancc of at type has the same opcrautions defined on it;
what dinguishes one instance Roum another (besides identity (eqness)) is the values that rcside in
its instance variahles. 'I lic examrple ahu~c illustrates diat a caller of operations does not know
what thle instance Narialcs are*, our two ways of writing the ship operations have diffcrent

l)SK;LMMAN;H-'.AVOR 55 16-JAN-81

Flavors 41 Miodu~j t

instance 5 driatles, but frorn thle outside (hy eacl h sarie operartiorrs.

One ight ask: "But sMhat it' the cailler cu lumcts (aref ship 3) and not ices that hie _cts haick
thle X-Neloeity rather thanl tile speed, [he) hIIle canl tell Mu hch of' thle tvmo mriliiiruir .cie
ulsed." I his is trueite ' thle caller Nkere to do tha, hie colild tell. I los%e',r Ml enl a talcilits is
imiplemienited Ii the objeet-orienited sis Ic. old cetin InMctioriS arc diented arid .id~cse rCtl:
the furnctio ns s h icli a re coni side red to) hc uper itimls onl the I\C pe l object. I tie et itIAL I f101m
ship ito its callers only speaks abouit o%1 hat happenMs it' thle caller CIN the0e IrneIorr1S. I1 Il'COHnICe
mrakes no guarantees ait all abIout "hill would hapoen if' the cailler %% ere to ,tart poking Miomrid onI
his oAn usine, aref A caller who doeCs so is in vrror: lie is depending oii soiuetliihil It i ot
specified iti e contract. No guarantees "erces mr iade about thle resui ts oft Such actiton. and so
an thing inay hap penr: in deed. ship iia\ get re in rplmniiited erm iht. rtid tile co de thm i It eS thle
aret w~ill have a different effect entirely arnd probabl\ stop ss ork ing. I Iiis example sliv.m s Ml\ thle
conrcept of' it contract bet" er a callee and a caller Is irirporfanlt: the contract is si ht spec. iesC the
in cert~rce bets" eir thle two mrodurles.

U nlike somnre other languages that p rov ide arbst raect tv pes. I isp NIachline I isp miii no e Ilrtk tei
to haime the Ilangulage anll ilmticall to rh id conlstruects that ci rcu iiie it [lie cu Itt a ct. I h is IS
Intentional. One reason tor this is that the I isp Ntihilie is ail inrleractis e s\s steMiad Soit irIS
imlportanrt to he able to examine and alter internal state inlteractr el (usually Ilii a dlig'v)
[trrthermrore, there is no strong disti nctionr between the "sstemr' programsll and the 'user'
programs onl die Lisp Machine: users are allowed it) get Into m)~ part tit' the langurage S.stcme i and
change Aliat Lhev want to change.

In su~mnliar: by defining a set of' operations, and making only a I ,-ific set of esterril
crtr points msailarble to the caller, the programmner canl create his ownl abstract tvipes. I heCSe C P
can be usefuil facilities for other programs arid prograrmmrers. Since ~eimplerntartuin of' thle
type is hidden from the callers. mnodurlarity' is rmaintained. and tile irrpicnieittoriu cihe (hanged
easily.

We hrase hidden the rmplemnentatroni of anl abstract t\ pe by miakinig its (pertio1', alt
t'uniCtionls ss liCi thle uIser myCall. [hle imrportanrt tilinV is iot that1 thes are I Irrrrctrurus In I ispl
eses hirrg is dlime with flirrctIiuN. [hie ipirrtNI((ilithig is that('AC hase% defirred a nes c Irk luiul
operation arid gi' Li it at nanie, rather than requriring ~iono Alio ss.rrts toi do thle oper iton to
ss rrtc it out step-by-step. 'Ihus swe say (ship-x velocity s) lrther than (aret s 2).

It is jurst ats true of' stich ahstlact-opeiriorr iirtions Is, of' urdirrl.rrv hiriution0s that1 \tiii1'ilres
they, are simple eriorrgh that sAe %\arnt thle comipiler to Cionmpile special1 coide 1,o1 theiri ruttier thanl
realls caIllrtg thle fuLnction. f(Corrling specia crude like this I rs ~ titricllled Ii Ity1I lhe
comipiler is directed tio do this through Irse ofi iiroiS. det'siibSt. 01 0upliuri/Crs. ii lntict
.rrrrrr11ges Ibr thlis kind of' speciail comnpilatioin Ijr rte funictions that iger the inritice (,1,lic .t
structure.

Wheir we, rise this urptini/ration, tile irriplerliirettur oit tire .rbsici ts pc is ot fl idtii In a
certain sense. It does rnot appear in) thle I Isp code st riren h Ilie user. bitl (ltc riIeI in1nli
conipiled code. h le reason is that there maiy hle somie cirupiled tnrrictitun thin Ilse the rmniaO ((Ii
,AlIrteser); eser if Wot change thle detiruitionr of' the Imacrir. the exitig iliplICtI ole i l
contrinlre to use thie rild detinritioni. Plus,. it' tlie irliplernentllrtiutrr ii a Iriuidurle Is chirrigeil p i 'IIniis
that ulse rt may rnced i he recomiled. Ibhis is somecthing)Ae sitiretnies i(cept for tile ,Ake itt

I)SK: I \1lIA N.I I A VOR 55 10 .1

InI (the present iiiiplententati(11 of flaoors. vohich ik discuss-ed below. there is tol such compilerintcorp~oration of nitomodular kniowledgev inlto a1 program., except \Nhen the "oitide-accssihle

to deal %ioith other objects that are like ships ill thu,1 t e in loxable objects 'with mass, hut(
uinlike ships in other ways. A\ wore ads ancedl model of' at ship mlight include thle concept of' the
ship's engie pow er. thle nuLmbe of passengers onl hoard, and its name. An object representing a
me Leo r probably N ould not ha~ e any of' these, huti might hame ainot her at tribhute such ats flow
much iron is in it.

I fowever, all kinds of movable objects havie positions, velocities, and mlasss arnd the systctr
\% ill contin some programs that de~al with these cluantitieS inl a ti onif'01 \a\. regardless of what
kind of object thle attributes apply to. For example. a piece of the system that calculates every
object's orbit in space need not worry about the other, more peripheral attributes Of ariOtiS types
of obet:it wok iesante wyfralobjects. U iiliartunately. at program that tries to calculate
the orbit of a ship wil need ito know file ship's attributes, and will have to call ship -x -position
and ship-y-velocity and so on. The problem is that these functions 'won't work t'or meteors.
'['here would have to he a second program to calculate orbits for meteors that \Nmild he exactly
the same, except that wheie thle first one calls ship- x- position. the second one Would call
meteor -x -position, and so on. This wottld be %ery bid: at great deal of' code wotuld have to
exist in multiple copies, all of it would have to be maintained in pat ,ilel, anid it 'would titke up
sp)ace for no good reason.

What is needed is anl operation that canl lbe performed onl objects of several difleremtt types.
For each type, it should do thc thing appropriate for that type. Suich operations are called
generic operations. Tlhe classic exatmple of generic oeain s(iaihei ucin nms
programintg languiages, includiitg L isp Machinle L isp. T[he + (or plus) futnctioit \0il accept
either fXixnums or flonunis. and perfom either ftxinn addition or Ilolnm addition, whichever is
appropriate, based onl thle data types of the objects being manipuled. In our- CUMaInpl We need
a generic x -position operation thait can ble performeo oil either ships, meteors. otr any other
kind of mobile object represented in the sys tem. Ibis way, we can) Write a single pro~gram to
caIcuLla te orb its. Whenl it 'wanits to know thle v poItui him of thle object it us decalting \0it1, it Simply
invokes the generic x -position operation onl the object, and 'w hateser type of' object it has, the
correct operation is pcrtlorined, and the x position is returned.

A terminolotgy fo~r the use of such generic operations has emerged from the Smalltalk and
Actor languages: performing a geneici operation is called .wciiing ai iossage. IThe objects in the
program are thought of' as little people. 'whol get sent[ittessages and respoiid 'with aiiswetrs. In tile
example above, thc objects are seitt x position messages, Ito xwIich thley- respomti with their x
position. I'his nii'.ssage pa~s-ig is hi i' genetic operationts are perforimed.

l)SKAlMMAN:I1 AVOR 55 Ifi-i A N-81

Ilavors 6 (JeiclIa: Op rtlill. I isp

Sending a Illessage i" ai Vay of' illioking a I'tinction. Along skith the nama' of' the niessagC. ill
general. soi argtumeints arc passed: henll the Object is done ith tile nICssace. some \S i ltMe
returned. [Ile Sender Of' the Message is sinpl calling a function \% tl sonic iatigui nt, id
getting sole values back. The interesting thing is that the ciller did not specil the najai of' a
procedure to call. Instead, it Specified a nics,,iage namtci alld all object: that, is,. it said Mhat
(peration to perfoarmll, and what object to per forli it oil. Ihe funcLti on to il\ok e was jilld tram
this in formation.

When a message is sent to an object, a function tlCrefore must be found to hazndle the
message. The t\%o data used to figure oaut %O aich l'tnction to call are th Iao (i atf the object., Antd
the ,aimic of the message. 'I le Same se (Set to tanctaai arc used ioa all iall cn s (of' a gi a C1t t pe, So
the type is the only attributl (if tie object used taa figure ttt \hich lunction to call. I'he lest af'
the mnessage besides the name are data which are passed as 1argaL11enIt to the ftaiction, So the
name is the only part of the message used ta aind the f'atlaction. Sa :11 a auticLion is cilled a
ineilhod. For example, it' we send an x-position Iessage to an obiect oif tpe ship. theta the
ftlnction we find is "the ship type's x-position Itmethod". A iethod is a ftanctioll that hanadles a
specific kind of message to a specific kind of object: this iethaid hanadles nessages natmted x-
position to objects of type ship.

In our new terminology: the orbit-calculating program finds the x position of the object it is
working on by sending that object a message named x-position (with no argialnemts). The
returned Value of the miessage is the x position of the abject. If he object was of tlpc ship,
then the ship type's x-position method was ineoked; if it was of type meteor, then die meteor
type's x-position nethod was invoked. The orbit-calculating prOgrai just senads the messagc, ,ad
the right function is invoked based on die type of tile object. We nu. have true gencri
functions, in the form of message passing: the same operaticn can mcln different itaings
depending on die type of the object.

1.5 Generic Operations in Lisp

I low do we implement message passing in lisp? By conventiurn, objects that rieice em,'ssigcs
arc always fioactinal objects (that is, you can ,ipply them to arguntents), atid a message is ,.:lat to
an object by callii, that object as a function, passing the 1attae aof tihe i'aeSsage as tha fir.St
argument, and the arguments of the message as the rest of die arguments. Nlessge tagsatms ate
represented by syintols: normally these symbols are in the keywvord package (see chapltc 19 (at
(ie ILisp Machiiie Manual) since nlessage alac a protocol for collilitanicatita! be t, ccII d i 'Cltat
programs, which may reside in dilfterett packag s. So if we have a variable my-ship whosc Aloe
is ani object of type ship, and we wait to kiuaw its x position, we send it a message as f1olhaos:

(funcall my-ship ':x-position)

lhi lori returtns die A position as its returncd \alue. ho swt the sh p's * pasitiat l 30. e
send it a itessage like this:

(funcall my-ship ':set-x-position 3.0)

It should be stressed that tn mie% features are added to I isp taar incssalc stad a at,: \e mipl,
dlefine a can\entiioa in the way iahjccts take ,igillcnits. lhe callacntloi s.i that11 ola hjckt
Accelpt" messages b al,,Iys interprCtil lg its firlt ar.latall it as aitl i -,ag "aaitac Ih, 1 J' 0 b lell ,

I)SK:I NIMAN:H-AVOR 55 10 I \\ ,1

1-11%ors 7 t~i; I l)I ils

cit~drthis iiies 1alC 11 1itie. finid the tWnijtniIMI hi s the mthfod fir ll i It1; ,il2 1l,1111c. and
imok iL11,1at fILttion.

lIISs raISeS the i(tLestiiil (11' hit"y Ifte'Sit~e -CCCi% Ilg 5' iikS. he0je1J 10' WWI L Y ILols find thle
riu llI lwthod ,0 lth tilie ssai2C it is clt. lIietloe mthe ilbieCt lix.lo Il oh .hlil s 'I
tukll AWLII ij Cts ctLt itist Il:c defstrLICfs 11 lIlCk. 01ICV tliixse '1retlt, toIioIo. lt,(doe stImMIli
dtfined hr defstrLuCt xxas d101111' S0tIotethino WICefLo>. it \k,(s Il101dilO I 1C 1"11 ltiCeJF1,1hlC1 (tfie
in1ternal steL) oft thle objCt. W\e need at fI nCtillith imflit l State: Ihlt is,. 'ke teed .1 ColiluilleI.

Of [the I isp NLaChine l isp f'eattires presented Sot far, the mlost alppi opriate is thec closllre (se
chapterIIf 1 f (ltte I iT) Machine Manlial). \ ITOcSSiage -recCi in g 01hieCt 0-111d he i II1lltel as a
clolsure ox er itset of ilstanee xariaibles. Thie funictiont iivide the2 elosore is ouid Lc e . hig selectq
Coirm to dispatch on its first argumfet. (Acmlli rather thtan using closulre,, m d .1 sielectq. the
L isp Machinte pros ides coim.s anid dlefselect: ;,ec page 30.)

While ttSitig closu~res for entities) does ssiirk, it hits ses erxl seriouls prohlemis. I[he main
proiblemii is th at in orde r to add a nevk Iope~ra tiol? to a 5sstem it is necessar 'x LI Ilo odifs at lot of
code: son hiase to fit'd all tiic types that uttdetstatid that o)peraiffon, anid add a tic\ claulse to thle
selectq. The prolemt \% it thxis is tha.t \lill cannot tcestllll separatae tie intplctflettatioi of' your
new operatioin front thle rest oi' the s~ stei: thie methods mi11st he iliterheax ed xx ith the other
operatinis fo(r the t pe. Adding at ness operai-diti should hIlly require ox/ding Lisp Code; it 'SiOlUld
tnot reqtuire inodijving L isp code.

I le entixentional way of making generic operations is to hlave a proicedure for each operation,
which hats at big selectq for all thle t\ pes: this mecans ott hiase tol niixdi f code to add at type.
[he way descrihed abos e is to have aI proicedure for each ty pe. sh lih hats a big selectql for all
the operations: diS IIirteaS yol1i have to niodif\ code to add an operationt. Neither of' these hats
the desired] protperty that extending die systm should only, requirie adding coide, rather than
modifying code.

Closures (and etitieis) are also somewhat clumnsy and ct-tide. A far iiltre streamlined,
convenient, and poss erfitl sxstern for crecatiiie messacge-receiig objects exists: it is caldthe
Flaor mnechaiso. With flavors, VOnI can add a neA PItietod silyl h% adding Coide, ssitho01t
mod ifsino a ist liig. F1.11rth1i cmlire. maiieny commnili alld use ful things to (1(arc \elr% easy to do
with fiasors. File rest of' tltis chapter describes flavors.

1.6 Simiple Use of Flavors

A flivor, in its smplest form. is a deinifion of' an abstract itvpc. Ness flax ors arc created
with the defflavor speciadlohrin, and methods oif die flax tr are created xs ith the defimetho special
foirmt Ness instances iof a flavor arc created ssith the make instance functiont. lThis section
explmi s siple uses of' these forms.

For an example oif at simple use iif hlasors, here is hlow tile ship example ahiise wsould be
implemented.

l)SkAIA\I NAl \VoR 55 16-JAN -8

lavors XSimple tsc rd IA l~ors

(defflavor ship (x-position y-position
x-velocity y-velocity imass)

get table -iris Lance -var jabl1es)

(defrniethod (ship :speed)
(sqrt (+ "'x-velocity 2)

Vy-velocity 2))))

(defriethod (ship direction)()
(atan y-velocity x-velocity))

'[he code ahox e ceatcs at new flavor. '[he fir-st subform (if thle defflavor is ship. Ahiclh is tihe
name of tilc new flavor. Next ii the fist of' instance valriales; tlre\ arc thc fs e rit aS11 Lid he
failiar by now. The next sribforml is Something we will get to latcr. 'I he rest of' the suo i is
arc the body of thle deffiavor, and each one specifies aii option about tills fir Irl ouir
examnplc. there is only oric option, nainely :gettable - instance - variables. tIhis iricairs dirt (Or
each in stance \ariabh I, ain method shoumld atu oriniat icallIy bc genierated to ean n CVL11 alue Of 0 :11
instancc variablc. The namlle of' the nmessage is at symbol with thc same rianie as the iinst,riue
variale, but interned on the keyword package. TIhus, medrods are created to handle thie
messages :x-position, :y'-position and so on.

Each of thle twoi detmethod forms adds a mnethod to thle flavrrr. Fihe first one adds at handler
to thle flavor ship fov inessages namied -.speed. Thle Secolnd sttbl'Orrii is die lambda(IZ-list, arid tile
rest is die body of the function that handles tile :speed message. Thle bob) canl refer to or set
any instance variables of die flavor, the same ats it can with local variables or special \ariihlvS.
Wheii any instance of die ship flax mr is in voked wkith at first aigurnWIJ of' direction. thle hod I f
the secoird defmethod will be evaluated ini anl environmniit inl M ich drle instance airles o
ship refler to the instance variables mif this instance (thle one to which the miessaoe wa s senti). So
wkhen the arguients of atan aic evaluated, the values Oft instance \ariables of die Object to M IMI
the message was sent will be used ats the argumnents. alan will he invoked, arid die resrilt it
returns will be returned by die instance itself.

Now we havtc seen how [to create a new abstract type: at new flavor. F ~vrv istance of thris

flavor will hia'.e the five instance variarbles iiarnied iii the defflavor f'orm, anid tile sex en in ethnmds
we have seen (five that were aritotnaticafly genrerited because of' the :gettable instance -varrables

oiptioni, and two that weC Wrote (iLIr-SCIx s). Tlie xiay tor create an inlstan[ce Of Or Il e" lla'.oi is
with the make- instance funrction. I fere is row it Could le used:

(setq my-ship (riake-instance 'ship))

'This will reti irr an orbject whose printed represemntartion is:

#<SIHIP 13731210>

(Of course, the value of the magic number will vary: it is not initerestinrg aiMwy. le
arguinint tr make-instance is, ats Yrru Can see. the mianic of' thre flavor to beimtriiitd
Additionil ;rrgirrnents. riot used here, arec iri optiho/A. thatl is. ('rilrrnr;Iiids rrton 01C of MIlwich
we are rilakirig iii instance, selecting u;ptiotial teanircs. 'firswll-. 1 e discussed rinei iii a iitr.

I)SKAI NIANIH.AVOR 55 10IJAN 81

Fxalnlinalionl of, thle t~aor we haxle dir Shlowrs that it is quite uselessS is it strundS. since
(here is no A~ay to set anN of' the pilraitr"Iers. We call lix tis up easil, b% punirig thle
:sottable -instance - variables optionr into the defflavor forn. IhiS opuion lkdefflavor to
cenerate Imethods Cor irresSages nied :set x position. set -y- position.~ md mo~i m- ci stth
irrethod lakes orie arr.guiient. anrd set,, thek ciii Iesipoitw itli1 cC \n1lable I' thre e\ llire.

A nother option "~e canl add to thle dlefflavor is :initable instance variables. I, iltm 1" to i
itiitiali/e thle \aliies of, the instance variableS when an instnce is first ciecird. -initabte Instance -
variables does not create an\y Intetods: instead, it ma1,kes imiali pi A I I rIA harri1ed :x -
position. :y -position. etc., 0iha CAn be uISed as tnlt-01oton JIrgICue,tx it, make instance to
iliniile thle corresponldiii" instance %xarjables. *I hr. set of' mlit options, are sonietrllcs." kcalled 'le
ina-plisi becauise thes ate like a Iroperty list.

I fete is the improvmed defflavor:
(defflavor ship (x-position y-position

x-velocitLy y-velocity mnass)

gettabl1e- instance -var iat)]es
:set table -i ii stance -var i a b 1e s
:initah~le-imnstance-variables)

All we have to do is evaluate this new defflavor. and the cxistmi,- flax-or defnition \01,l be
updated and now include the new methods and in itiali/atiotr options. In fact, the instance we
generated at while agoi will now he able to accept these niew% messages! We can set thle mass of
the ship we created by evaluating

(funcall mny-ship ':set-rnass 3.0)
and the mass instance variable of my -ship w~ill properly get set to 3.0. If yotu wanit to play
around with flavors, it is usefuil to know that describe or an inlstance tells on (lie flax or of the
instance and tile values of its itnstance variabhles. If we were to cx alniate (describe mny--ship) at
this point, thle following Would be printed:

#<SHIP 13731210>, anl object of flavor SHIP,
has instance variable values:

X-POSITION: unbound
Y-POSITION: unbound
X-VEt.OCITY: unbound
Y-VELOCITY: unbound
MASS: 3.0

Now that the instance variables are 'initable". we can create another ship anid initializ~e some
otf the instance variables using thle init-plist. Let's do that and describe the result:

I)SK:I.MMAN:YIAVOR 55 10-JAN-81

(setq her -shi p (make- instance 'ship 1) x pos it ion 0 .0
:y-position 2.0
:mass 3 .6)

~>#<SIIIP 13756521>

(describe her-ship)
#'cSIIP 13756u71>. an object of flavor IHIP.

has instance variable valu~es:
X-POSIIION: 0.0
V-POSITION: 2.0
X-VELOCITY: unbound
Y-VFLOCIIY: Unbound
MASS: 3.5

A\ flawor call also Cstablish del'aull Initiji'l Iites fon instaInce %A1ib-tlCe. I eIC detati1 ltIC Xlsac
uised \01hen a ne\ Instan1cC is . reated it' theC %aIieS ar 1101 IniuilIi,'CdJn aux I nthe wa Ij CSyntaIx
for spci~fyinJg a & fctail initiall \altie is it) rCl)~tCC [Ilc 11,111C (It t1W 11iik, c \ariable bs a list,
whose first ClemIent is the name and \%hoise second is a firmn to esaluiatc it) produce [Ile detiiilt
initial alie. F or cxaniplc:

(defv'ar *default-x-velocity* 2.0)
defvar *defatilt-y-veloci ty* 3.0)

(defflavor ship ((x-position 0.0)
(y-position 0.0)

tx-velocity *defaul t-x velor'r y*)
(y-veloci ty *defaui t-y-ye loc.i ty*)
mass)

:gettable-iirstanice-vaniables
:settablp instance -variables
:initr'hle-instanice-var'iables)

(sotq another-ship (make-instance 'ship ':x position 3.4))

descr ibe another' ship)
#. SHIP l4563fi43' . an oh loct of flavor SHIP,

has ins;tanco yvariable values:
X POSIIION: 3.4
Y POSITION: 0.0
X VrIOCIrY: 2.0
V VItOCItY: 3.0
MASS: unbound

x position was iiiiii,et explicitly. So the detluilt kils igiioi ci y position N is iiiiIItali,d
fromn 11 the 111 deta h , ic %hIiclI Was 0.0. III lie tvo i O sclocitC iist1-incc "Cir illsfr niul, ri
their dctitt %I101cs LAIIIh 1'ain11 hor t0 globl)J sN11ibles. riidS'i %%;t. riot cy~lil1k rt~inirt,c/d
and did not t1INC a del0iiilt in1tiali/ation, so it %Nu.s le0t iurflind.

l)SK:!MJNIAN1l-l \\70I(55 U .\St

I a~os (ISI l'i

T'here are mians other options that cain hc tved inI deflavor. an~d the o ii '111 Ln1 he iise-
mlore fleXibly OJld1 just to) itiiti,ili/e intstanlce iihe:luldli' 1*1k' a ie CLIk IIe Owti.luttf
But even "~ith the small set of teatures "sC base seen so far'. It IS CJ. 10to\ NIIIC hjCt 011CHuLed
programis.

1.7 Mixinig Flavors

Now we have at ss stein for defining, iCSStune-IeCCC16ing OhfCLIS sii 01,11 %sC .111 ho\c giIei CI
operations. If we %% ant to crea e a ne\% ti pe called mieteor that x on id iiclt tlic saiik i' ielieric
operaltionS ats Ship, %ke Could Siinplx x ric ,mtottici clofflavor imid txx o iiuoic ele thod h iat
looked just like ihose of' ship, and then nteteous anud s.11hip xx md hmoih t(Lept the' saine
operations, ship Axmiuld haxe somie um1ore inst1ce %a ,11,1ihlS fh holding attiihoie" '.p)cc~tihct) ships.,
and sm e n uore mnethods for oi era ti ins thlat ire inoit uzene ic. hut tie onl.\ defined foin ships-, the

same xx ould be trute of meteor.

I lowexer. this mxould he it a wasteful thi ng to do. '[hle saine code has to he repeated inl
several places, and severail instanice variaihles have to he repealed. I hie code no\% needs to be
ma in ta ined in mianyx places, which is atw 'x \s 1ii ndesi rah he. TIhe p(xxl of' if Iii\o rs n '1 the 11i111mC
"flavors") Comes Ifromi dhe ability to mnix several flax rs. and get ai nICx tIAxor. Since thce
funuc tionalit f ship aind meteor partially overlap, we can tae thie cominioii fiiictiouiluty and
mnove it int) its own flavor. which mnight hev ailed moving object. WVe xxmuild detine moving-
object the same way ats we defined ship ini(the pies ions section. TIhen. ship atid meteor could
lhe defined like this:

(defflavor ship (engine-power nuiber-of-passengers nanie)
(miovi ng-object)

:gettable-instance-variables)

(defflavor ateteor (percent-i ron) (mnoving-object)
: ini table- inrstance-var iables)

TVhese defflavor forms use the second suibform, which we ignorcd previously. Trhe second
subform is a list of' flavors to be combined to Corm the new Ilavor: such flavors arc called
t'onponenls, Concentrating on ship for at mloiileit (niagous things arc true of' meteor), we see
that it has exactly one component flavor: moving -obtect. It also has a list of' instance variablcs.
wxh ich includes only the ship-specific instance vanubtics and not the ones that it shares with
meteor. ll incorpoirtinmg moving -object, the ship fas or acquires all of its iinstance variables,
and so need not nanie themi again. It also acqui res all of' moving -objects mnethods, too. So
with the new definition, ship instance% %Aill ,till accept the :x -velocity and :speed mecssages, andi
they will do the sane thing. IHowever, the :enqgine power mnessage Axill also be understood (and
%&ill return the value of the engine -power instance variable).

What we have done here is to take an abstract type, moving -object, and hiuild two more
speciab/ed and powerful abstract types on top of' it. An v ship or meteor cmin do an~ thing A
miov ing object ca n dto, antd echld also has it% iw i specific ibi lilies. I his kind (if building cani
continue: we couild defi ne at flax or called ship - with - passenger that was houilIt on top) of ship.
and it wonuld inherit all of moving - object's iista nce \a riaihles aind me thods as \xx~ eItas ship's
instance variables and methods. I iithcrinore. the second subfhnrn of' defflavor can be a list of'

I)SKA.MNIANAlI.AVOR 55 l6'-JANS 1

sc r m il c, noirtrr cltNI. III C I II II Ig tI, It tir rI c tri NL.hrk I Ilv lil 1 1k I 1 . tkii I I

All thr'e taltt rrI copnet tirek- list. il ~I IN'l! 11k' Ili 0~ i IN 11iio hINf 11111 rN.

the Compo'rlICIIr ts l illi lkIlC i LurIlilinill' (11 Owi lilliiicuI. *' it'. fvlilt ,. 11) \I> hI, l it

c11oipiis ire- flnvor Il .rikICd flvor 5.. ird' lori I /,. dlil.l lit "/ 'Ar A~ I, Ivo 'I .hc

flavor 1. flavor ?. t Iavol' 4 . flIavor 5 , fI Livolri
I ttl rir Calork ill this list arlc tile Irloic speL lii. less hlk I ll' i i cIll il 'trJil) tt
passengers Aold III tus, Ili tict. list. lti't l~ h\ Sti tIt i 1d . Iiioviliq oblject, \ 1
,dl'A,Is tli (l ~ f ii I lr1k list of' It',1()\kit C0rt1ii l ilr s. \01tl[C 1h1 Hii favoi 4 ~LIL', Il'(t r~ IICI I,

thlis list. ()rIl tie first tclecnce of a 11lil41i 'Iplhlrs, dltiilItN lk' illln'\cd I lreit 6w
of' dtrplit - is done during tlie wAlk.. it' Olcic is I ~cCV ill tIle uilclked gir'l it % Ill [W(Itise
norr-ternirating COMPtlirtioll.)

[he set (if instane %irriihlcs for thre IlwA 11 :\,)I I tilt. mill ...' If) se il'ths of in I.i.,
%ariahtes tli all ihec Ciifponiicl flawlsr. It hwih~ tlhvol " .11 fll t oi 'll Ii~lii'rlilt .
naincd too. hien flavor-1-il r a f e anl rirtLilke i: ijhic r1111~i t I itl .11 llfowN 0I it wItc
to too 'Ant r-ee toi tis Samie rirStarIIIL' 1,rrtt tll ,rtl i I1. ! ofI
C011tlttiirc.rto w~th oire r11lotlicr 0 isrire Ntr.rIctt instnt. 51 1 KtC I :1 k ''Ilk q'lik '

escr sets the %aiii, and tile orthetrs oikiiI'l .uk 1t) I I,, duI'ri 111111 I1 \.iirI ll~ l 11 il

\ariabic comeis triri (lie. first cormpuunent IIlasrir tr0 Spetl. tY rnrr

1l110 sAI [I l ttrc i 0iIrlN (~t11 O W eL0r1irj i ilI Ilk k0. iiitiiilt'- IN Ii II, l 11 Ii tlilt ti 11
WPrhenr .r lltlmu i,, 1inedic, I ingle trrrr.trrn. I~te .I "'ilbu.' / ii1 11.!. I, "'lltIII ,

rrres.gr suprtl~i (l h tOr firs i. t irl, Irr1ilol utu is I I Nt ;W k t I'w of 'I ni Illk II h 6"t 1, I i tII .1
110111ag 111rr l tIre ctrrrprurcrrt Il ir Itisrir.1wi IticIC~ lic .111 drill irii'Al. thu 1 likiIllH fl

he cnmirrrrrCd: thecse call he Nelct led Vh\ iL ri- Ishicil i 1,1\(I IN dsirIr I Ilic 1.1 l, IstJN4

MrAe C~ Irrrrr IoIIS O'Crnrhi natuir11.

fIre hI lii' sever.rl k ritis iclthodls. hitl No Ill. :11 orl ki (,I Ill, Owd" \%t~rc i. Ni. I lii.
prrunnizu irt rrils Ili dre t i lt 'A I', Illlmnit IliI!l t. i Ik Ii I i I l l ht. , Il II

prurm ltckl lin riuirir d. hrI l rt M L- ti sts. liile i l11111*i 111, JIi I r, Nlli 2 Il 11 ,' Ill thi 1 ic1

filst 1 ~I i I4 11 irsllll nts . i h m Ilethirs W\ ,11 till' is lilk-c I N , is ,1 11i 1 (i 1 Ilk N1.1111 li i lh ;' i
1
.1'

too mid il i t nrr , Ir h i barr on tril ot it, (ltill \(I .111 i IIr t l .V '1 fill I l!' 11
prr Idiig Iln Our own41 Ilitid. 'I oulr tirethrd 'Aill he Lirled ,. rlik tiiN 'A Ill IirerI 1teI .111CO

Siple reruding is outlert usefuil: if'Nl ",ril An ti timiki' .r TIA t1i lii) b rr it IN piII lii,' tou
except fun it rcts crnrrlletc-h dillercrutlN to I few iiits\,r*Ocs. turn il111 Il 'A llkd I 114r',. ICte

youi duurt \&,irt to1 coritplel. 5 rivemde tire hase Ilirur s (too',) Illilldtt 'A'l iillIuieN ''II ss lit III
add Sorme cxiii things to lhe dorne. this is "here crruirrni i of ininls is used.

I)SK-l NM\IAN l AVOR 55 tt\ss

" CIN I I~ i. I (,I JI kitt lil 1, 11 Ci~ 'I, q l t I h i .I ~ C i t I kii. Iiueit~ ft(It

If\ fi l I ctit I W ollllk" I N11 !1 i I) -11 (11, "!) 1 1 1 I 1, I1.1 t e III

I IIk ti 1N rct IIId %kih \%c tl,tiii 1 ii i f rL iild Illcd..iiiii 1 hR . hth 1 Ilii tIlk iidvr th'im

uIId hCC1 111 l barIIA ln top of too iti bar hc l l icin I i ll)(k I I i p bi i it Li III rf i h id !In mo o llo

LIIII f llav fil ii i It ill lii in t it hitt ;lator 2 I ~ I. II %kIII uIII it Ih I t dfu nhe Icfirc aciiu

~N 4I .bc I ,% il .1(fu ''v N fvo I2 I f Isi hilldo I ifict ulii Ii Io If(c .) 111 k f !avo -2 metote
Ihe it10111 INou ~ fI I .i iil 1cm (nN fhN idu il hol dtntif cotithiOw n n c rihc .ibo'l c.l 11 I 1 .1 tilet
.ittci Aii I, Itll', Jt1i HLporicut IS XS fiti i'i l l' I .1111ct 11ccl 1OH of.1 ,h tc ttiii Io uiIIl 1d ii wil, c'l o jc

M~cii iltiitIN fe ti i bt uttd I II II tit fu*III I II' ItI I (lefi10l1thC d efl b ll I C IIIC1 II Ili'I)Id. a

11 1 FSA 11ii1i111 thi I li,% iilc ati cir hi cAiC (Jlt I ipf c Ciific oldl I ll c i e t p N t it: th

br~uid bar oni ilt it to . el br's IN oedam n i4 IIItt I Nt 1? itit ft. c 'illctof Ito iIll to. Md

bartNpc i tc thici w,% il it tte ii t o f' ts f ui lii p iioo.c t t ft i ~ cas

M ett Sh i o f hil ilt, i itierI,, ut k OI L lil)ii t\ r de aoi ff . I t tileI, vitilt flavor:I built

t)if iflavior 2: tain itc simia'iitit)ill mac h t iI f lvor I iN hauil ut flav ur pint el iteitdcitoi

IVIdCl ndt Aktl' prt1 111ifing flii,1 IS tle iJ210 ICsh i (i .t Ati ol \ini)iitihln I fo iic p int- ml
Incit I i ' thit1if fIl i l ek itc If 1111 Ic t k c Ific .1111 ! 1 '% I I'll CI Ii t) ti I ct l va'ni)11 1 ae , I (I orfil nctitoin
(iCll m it IIVbId I ll C 1111 Iilei tt. , i ilnc tiit shp .'e fi ct itiii iitlliI i t prn-sl

I out m tn- (it, il hii n i I 'kca Icl " k otli t van 1 e~illa hv c~ i h itd N ,is hi it l1 "1t 1 i tLN i
.pin .l licf iic Ab vaII-'ll f lo In (I C c dipi iii i o ct, , t wiwtu, to . id IS 4~e tn t

rin td tc icIIitiiit I SI it uli f . Ift- Ilci1iiiON I itt ~ il l I III l 11, tl'Ill lt tts i

I)SK IC al W [tt ktIl1111Il Ow !il 11 I 1[1(l tie tlf filet.l didR P, I6-I A XI

I I~ ttS14 1 Liml I II11(ijL oliN

there ire other %%.is to counine Iillittod, licsides kLiciiti. hoit tllstV .l'a kN is t OW l Nt~

COlUnTun101. tile nittie adlced W~t iii of onibiiiillilc Iledld .iic cxjliiuid 111 .1 later Net111 'AT
page 25. H ie vanilla -flavor miJ vkhat it docs i~ irill arc Asot expl ed lier stee paige 24.

1.8 Flawo Functions

doff Ilavor Macwro
A ilj'tor is defined by a fon-l

(d e f f 1 a it orI fl, vionmu' (varl v'or2 . . .)(l'I~.

flaol1iriitie is t skit'lbol which Saw t)' 11,1a1eC hist fh'tr., It m ll get it) stilavor FItlWIth
of' hie Internal dati-strICtlire conLIIIIIILe tile t~A'k ot thle t'laui.

(typep WI/i). Nkhc: ol/t is an instance of iei fliwi tiki //an, naml m111wll til il e
s\v1nhol flziie. (tyriep o/ f //ni -ntaon) Ist 11 iph I,, III i instilie (it a tilmtti oe M
"lhose coniponcelis' (poiblk itself) I-, A/It t- li.

var?, vtar2. cic. trc the nanics of' (Ie ITIl'tAIlCC-,II I.ibie' tL1l1,1iliig tile IOCAI l i IN,~ Olr

tla~or. A list ol tile narne of' IIn insttlce-\ji.1lc mid a dceitiuf ininii.'utioii li i is atlso
*ccep-tahic: the imiiii/.tron lorin il hI e e\,iiitd "he lieu aiii'tce of tle Ilal~or is
created if no oither initid aln u ii ilie \.inahlc is oimcl~id. 11 nlt ili(ol/itionl It
specified, the \.tiblc wkill remnain unboiund.

]lzt'I, flatr2, etc. are thle lialles of (lie' wlillpoltill IlaNtts lutii l itl 111ts flavolr i,, built.
I he 1 0(1u1e0 0f' LIhose tiuvors Ire ilici itkd I- dS e'I ihedl pre itI!IV

(4111. Opt2. etc. are optins ' Cath opiito ni1.i he (.ithci I kk,tlk Nd ibol ofi a1 11i Mt .1
key word 't~ m h o aind dI gutiic ts. tilc Ipt flls(I to deli I wiv oi e s i beOd t~ ii page 201.

all flavor names Varmable
[Ill is I lis~t of, the liaunes of all1 [Iek tllios i' m ihiwl et k- ci,ci deflavor'ed.

defmethod Aa, 'I

111 irtcuh l i iske dII c 1ii s 1 wi~ I i it ' i i tid I -Ii li~ Ii'l i i

fth us-m m I ,,aLe hr iIsd . o t il llu 1,111)IOW 11 t l \iler ut IN 0 ItLI k, 111k, Mc

for lin *u cn p:icte II et ill i w if iltilk 11 t'N O i tI t 'w 10, 1~ ilchitI l I' lid N III. \ 1t

11SI 1lIC' \NlIk Alt'tt)R (0 Ilk' l\\ MICCI

l-ai rs "5I I timin

llle IIIllst he fllictianls. fat spLt 1,1 I'M iMS. 1i"MI . , eftn 0C l the 111i1411011 htkd, tile
%aile of, Che list form-n is retined.ct

i le uliit tunal
(I . f iI, I hod (flai v t m i %%i) fitti

%% heic flolittti'n i .1 d \iilial. Si LIIi !l/ qam '!,i't S iiclhad t01 Men J '~a~/~~

al-iglieil is tile irressalc keN %%aid.

It' sanl edLeflne .I nrTIC'd that Is, .ilread\ dectic. thle ()id dletinii 1i) Is w pl.i~cd li t hi nett
()til. (isen a fltir. .1 miessige itlilic. anfd i Ilitetligid [%p w there ,IrI an lo:ie arr
talinetioa. So it %il defiiwo a1 before dicnin mretod l0r UiC aOO 11.\0 Wt 11JIidlo. tht, bar
rrressaige. ter n lreplatce the jV0re S ranlsbetbr-daICIIrn: hi'A es I. , \01 (a Hi~' AIlClC tile

pinni method'~ I iietht-dof aIi\ atlier t\ pe. riressage 11,1111 at 1Ilisar.

deinethoci .ctI.illI\ defuics a\iritl called (lhe /.mb~lu L il. &, a kililitii, andi,
tile hisIA\ !W01 stei 11ues1d 01,11cl Yihtit0 siito Ca cal thre rrel,'d. 'WIreaIICteIC 1 1" HIS1 istti
deal 'Aith suIch 11 foaual i 0sirtihlIC. %OUt (-am r11W it tit traJcC a 1irthIld itil trace_ (e

page 252 Ili the I isp NMaL hire \Liuil). I ti llawst' li~s In 1 0 tilred 1)'
1.ltrC,1tCIM1itini. Ikll ithi KpheirS) Othe \0 11,1111Ca . thle anethad(ts pe. tIne TIICY1il' 11,11e. ad
11method" I (t cuilte, sil - x -position method, ship after y velocity mnethod,
ship - combined - mass method, etc.).

make - inlstan ce flinot' iiilli tivl i i) l wh1irl I tttk p Utpi2 i'aliu'2..
Oc ates aind ReainIIs 1 anaslan]Ce 01' Uh e speLiied flaolit. Aigiumen Cs after thle firist iirc
alterntiung lait-liptioni ke "r, ss ind .1111 dl g nits Ca) thiose kes isaids. Ihiese oiptions arc used
to iitilt.1liie Instanice uai'iles 'indlit) selt iihitrr% optiaiNs is deswncrbd .ibose. It' die
llia'air sulpports thle :init irlessage. it i,, snt wa thle nesi h -uCated abject \Ish Otine arguanient,
(lhe ilnit-Idlist. f is is, discinb''died properts -list euint.liuiiig Chle iu11atir1 0111 11cc)Lfied iind
those defailhed 1rin die Ibis its default ind plist. make-instance is an) eas ta-call
intert'uce to instantiate- flavor:. tat lull details iclci lto 01h1t 1'11i1010t,

ins tan t I a te - f 1 avor fl~a,-panii' iiiii-It/w iptil ituil yNu-w wit P1rl'xsagfep

Ihis is an extended seisian iif make Instance. [is rig sani irei feaitures. Nate zhat it
takes the iiit-plisl ias &n irguitiet. iaier t illII taking a &resl argumrent ait' mit options
and %Iuesc.

Ilie uIII-1lINi ir vilieit maust be I dtscmuibadicd pr ei-tet list: Io(;f oif *i &est ugirient
%Aill clii. lCAIeu Irc Iuis piltpc'rt list (in lie mi'ifhtti. Ite hipriesMC1 Wll the detIiuit-11
phst are putprop'cd ain it' to ilwatl\ present.

Iit thle esenC that miit niethids dii reinprop of priperties .ilicad an the iiit plst (its
ipposed to sinipl v daing get mid ptitprop I. Irci the init plist Asill get rplacd ed. I hii
rIlanls dia1 l tr itIdil list Ofi 0ih11i011 AIs ll he iiiilnfied It t1s,' rrciuls thit loci tiC a1 Aest
ar1giuieli iml lit iaik; thle 11k a inslantiAte flavor rmust ap% its test[m.inii (e.
wsith append). Clis, is bet aiis rplarcl is iwt ihlmised an &ru~t itgllirlertS.

I)SIK1 \1\1 NNJ I A'iOR SS Ih \N 41

Fidt it'e the lo sill li 'tll ii I lieitl un~t e ItH1 a11'11.1m p irienli liI(ti iiil umlat te

ltit i irv fo tit \i datie. tlitIC ti w if ilw i lt- inethitg ~ .. ths.11a MM A ltl

M(1i lii c tileiflorpl. lilt(Aill w tlitil Otid til Ii t)1itl . 'C to,%0 1it 111,1it.0 he
immiiis itt.i witi hat iiU tepend ttm dii', rn)[tac i iiliii il el: t iintI

%th lpet Il"li oh ibl e r ill i~e tihieli . Plek Iii khi "tha h l V aIlt," IS. 11,1/~~lL I

if .nhkaii ppel is .1 in"Illk) thle I" t-ick h t h1.1- ti u d Ii nkt miiie w il iti t'f i SIbkle

and It 11111k dec1ied~l I) an11ph1 mol I" kewods lt Otl ille 'pate& k 2 1)) iI' teit II& t- he 1a

ifl"li% t.c 'll ing i lt ,nnt() ICI d I-A(l/kk ll1/+ %%,h !1,1 11 IIs ltIIip ii. such 1,0- t1 " IN i'Cll ied
toritplijed h otit h\ m sin lin tis c ,I [ti. hit it1de it'ni t,1,;1I N NCI W IItui i t s lied. IICf

Note1ac Ill (eal u itte utim-de j'10111 IsI e Ioll humLI the-h s 11C L A ult. I t l phstMIL m upti t

d c gI C 11 i itb Oil/-P lhi/C C I gitit Itsc iti Vilic l ut. l Ii hmiii *i piactsle i~ Iss lit to inic

lisis til),e M ii tilc s A m wustl ~ itt \(~lil~t. lie nk i(f.it c ptt m it plis i11d Iii tus il,

tie td. N lud it 01ntg a I daeinoVn.,1 sI AM I I([M11) t%,11

11' mie ana i tni en ipc s fjeit.it the iittiiihe i)(1 IS 1111 I~~it 6 1M IIt. I to H cut t,1 hbe
indtn e I, notii Je is i i t in itd iii the 0ea Ii I area.T 0 t I')C1111L IiI(

comi ned i~ii abot~ h\ ligll m ilt l ~ eI ol lilt 1 p'tI s l iii 'ilcd I ltkd ils itpiciji

ntci, I it (it' uwic d pr.otsi ct rie lock tobi CO; ned \ iii (ti In te Itl i i flvor.i tt th

Not iii limpW t thll ii ph j stilt coii tpiilt ing Aiil i pethoise (ptiol iir

If5 tie w [/ / 1 yI/ 1g liltI tlp ik \lll It 11\1 -I \,u 1 55 lit .i\ (I

I% ors 17 1 1.1 ()1 1 tin I t'n

(defwr ap per (b ar f oo) l (I I ar1-2) body)
(ILock - frobboz (se it a raiI)

. body ,)
ilie use of file body iictaiiiu icotit, defwrappotcd jilie nIini kitt. 1

tile exact iiitpl't1I~ttiio'i 'Ind ios \ cile Vilrap per,, tlill ji11lkent 1l,\011 to he

Note N%ell thit thle artgumuent \ii,ihles. argliand] arg2. alre 1101 icteteo~Ced x kil LOmnas.
hef'Ore themn. Mhew ii-\ ltook li kc defnmacro ''arguileiu ' Aiilhlcs, hut tile\ ire oot.
Those \xatiahbles are not fouind t1 tile blie thc del'wrapper-defii'ed ni.ik rn, is cpmided antd
thle hack-Lqijotiog is dto: rather tile resolt of that ioaclo Csplusoi and hR~l qu~ioting is
COdeC which. \%I~ he a nisSALe I,, -,Cot. x\ill hinid those Wailc thde t iciet. in thle
mlessalge ats l cial ohl~ f hle coi thin ed me Cthod.

Consider anoit ther e xam1ple. St ppiiSe 't \;i t boo ghtr' o i i a td a :before d aemon, buLt
1Ft i th il if dIe a lgu men a1 \s nil ouni eeded to I-r' (111 r i ftO CCSNii g [le 0 tessiage
immenlditelx., 'Aithiont eXecu11-til e prioiarv1- uiei~lod. You could xx tile a xx iapper sulch as

(defwrapper (bar- :oo) ((argi) .body)
(cond ((null argI)) :Do noth ing if arg I is rfn 1

t ltt']or(-cotIe
,body))

Suppose you need a %ariable for ctiniiltnicatiiin inong thl:ienaoitls fior d pairticular
message: perhaps thle :after dacions need to kntow whfat hil p riim\ method dlid, and it
is Something that Caninot he eailyi1 deduIced 1rom1 juIst tile itgtilentS. 'il night use an
in stanlce variabl hIc trhis, t r tin imight create a special valriable xxi li i, bo unld during
the processing of the message and used free by the mlethods.

(defvar *commuinuications*)
(defwrapper, (bar :foo) (ignore . body)

'(let ((*communication* till))
, body))

Simnilarly you might want a xx rapper wvhich puts a *cEtch around the processing of a
message So that anly one of' die methods could throw out in the event of an unexpected
condition.

If yon change at wrarpper. the changpe iay nitot take effect anutomatically, Ytou muist USC
recompile flavor mt it third aqrieiiti of nil to force the effect to proipagaite into the
COi 111 pled CICdx MICI [li te sx i e i ctities to Implement tilie fLaor. Ilie ieasonl fir this is
that tile f11\lxtrs'li catiIttt Ieliihl O telhde dihiereence beixxeeii reloaiding a file containing
it x ralper an tiltll. redefiningl [lie xx ripper to he dillerent and propagating at Change (o
aI %xrapper IS expetiiY e. 1111is tits he fiXed in) thle tr.

L ike dicri on minetlo , oh. rappets, x oik in outside-in order: when you add a defwrapper
toit a11o flatirbult Itl other flx i le iiexx \m ippet' is placed outside ;in) \%rappers of the
Ctomrpotnent flan is I lowxeei '111 \ tappets hiippen before I-j daiitm happen. When
aic cottibtited tinctlittd Is both, the caills toI tile IeJoie-doetion miethiods, pniity tiiethtds,
andti daCo-itt101 itteth11)iS idsae ill phtied torether, and then the m- appers are xx rapped
arouitd thictii Ilois, if a ittuputett Visoir defities at wrapper, methods added bly new

1)5K.I M\Nl I AOR S5 16-JAN-81

F lavors 18 I Id\ 1iiitl t

1l1mors will execuLte Within that Wrapper's COnteCxt.

self kI uable
When at mclssage is sent to anl object, thle %~artable self is a i Itoll ic. ily h1101.11d 10 that
object, for thle benefit o1' Methods which wanlt to m1anlilte 1 theOjCLlt itself' (Js pp)1OSedI
to its instance \ariablcs).

funical 1 -self mie'ssage argumens..
When self is anl instance or anl entit, (funcall -self on., ...) has, the same elfct as
(funcall self aigs ...) exccic that it is af little faster since it doesn't hmic ito rc-establli thle
context in wAhich thle ist ince s iriables evalulate cor rectly. If' self is niot anl instance~k (nor
an "entity", see page 30), funcall -self and funcall self do thle same thing.

When self is anl instance, funcall -self will only w ork correctly if' it is used in a method
or- a function, wNrapped in af declare - flavor- instance -variableoi, that was called from a
method. Otherwise the instance-variables will not be already set up.

1 expr -funcal 1-self message at-gnients.. lisx,~ot:argid,,elts
T[his function is at cross betw een lexpr- funcall and funcall self. Whut self is an instance
or anl entity, (lexpr-funcall -self args ...) has the same effect as (lexpr -funcall self org...)

except that. it is af little laister since it doesn't have to re-esablish the COMitM in 'A hich the
instance variables evaluate correctly. If self is not anl instance (not1 all 'entity", see page
30), lexpr- funcall- self and lexpr-funcall do the same thintg.

declare-flavor- instance-variables Afacro
Sometimes you will write at function whIiclh is nlot itself a metho01d, hUt which is to be
called by methods and wants to be able to access the instance -riahles of thie object self.
The form

(decl are-flIavor-- ins tance-var iables Ularor-name)
Jicu'ion-dejinition)

surrou nds the /u~lictiont-definif ion with af declaration of the instance variables for the
specified flaxor, which will mnake themn accessible by namne. Ctirritl v this Aorks by
declarintg thein as, special varables. bitt ti i pleenliationl it1ta he changed inl thle fit t IMi.
Note that ht is only legal toi call a fuinction defined this %ay while execut ig iitside a
mnethod for anl object of the specified flavor, or of' somne flii o built Uponl it,

recompile -fl1avo r flaror-liallc koitioiiml wve"o'/C ,to'vsagc (.oolemindnelost
(do-diepentlellis t)

Updates thc internal data of thle laxior andtin atflavors that depend onl it. It itih
flo'.i'sagc is stupplliedt mon-nil, oniN tile methiids hrf thatiliessMeY are chiti1ged. I he , stem
does; this when Noll defineC a new" Ieilmd thait did nlot pn.'x ioittsl%\kit. If' iot-old-
CtOl~ed-fllci'IiidS is t. then [ie existing, (coiiihiitcdl metiod funetioits \kill he tite ir
possible. Newk one, \kill only he g.ierraed if' the set ol tietirds to Ibf. ,llled has chiitpqed.
Ibhis Is thle 6efault. It ol.(- Old- (Oni'l-Nih/ i -ilCW s nIll. in ittallll~~I\ 'geICIcried l tM t o(
call multiple methods or to conltain Code geneCFRtd In. w rappers wNill be regenerated
iinconditionally. 11 OU yuChange f w r',llIpr, moil Joist, do recompile flavor %kith third
airgulieii nil in order to make thie new, w rapperI tIkt elleci. 11 -'p d/ is nil, tl
thle specific flaxor YOU specified will be recoimpiled. Nirilally it and all iboors that
depend oin it will be recomnpiled,

I)SK:I.MNIAN-'I AVOR 55 loJMN 81

Flavors j ~i onct

recompile- flavor only afl'ects ta,,ors lhat haxe already been compiled. I pic'l, this
enians it affects flaors that have been instantiated, but does n1ot bother \%itli nixhls (s ee

page 23).

compile-flavor-methods Macro
rhe fonn (compile-flavor-methods ./!rvor-name-l tvar-, ...) placed In a file to be

compiled. will cause the compiler to include tic automaticall\ generated combined
methods ftr the named lla ors in the resulting cqfasi file. pro\ided all of the necessary
flavor delfitions have been made. I-se of compile - flavor- methods for all flavors that
are going to be instantiated is recommended to eliminate the reed to call the compiler at
run time (the compiler "ill still be called if incompatible chanr es hae been made, such
as addition or deletion of methods that must be called by a combined method).

get-handler-for objecl message
Given an object and a message, w ill return that object's method for that message, or nil
if it has none. When object is an instance of a flavor. this function can be uscfil to find
which of that flavor's components supplies the method. if you get back a combined
method, you can use the I.ist Combined Methods editor con und (page 31) to find out
what it does.

This function can be used with other things than flavors, and has an optional argument
which is not relevant here.

iymovall- in- Instance instance symbol &optional no-error-p
This Function is used to find the value of an instance variable inside a particular instance.
Instance is the instance to be examined, and symnbol is tie instance variable whose value
should be returned. If there is no such instance variable, an error is signalled, unless no-
error-p is non-nil in wNhich case nil is returned.

set-in-Instance instance symbol value
This function is used to alter the value of an instance variable inside a particular instance.
Instance is the instance to be altered. s mbol is the instance variable whose value should
be set, and value is the new value. If there is no such instance variable, an error is
signalled.

si :describe-flavor flavor-name
This function prints out descriptive information about a flavor: it is self-explanatory. An
important thing it tells you that can be hard to figure out yourself is the combined list of
component flavors: this list is what is printed after the phrase "and directly or indirectly
depends on".

sI :flavor-compillatIons*
This variable contains a history if when the flavor mechanism invoked the compiler. It is
a list: elements toward the front of the list represent more recent compilations. .lements
are typically of the form

(me thod .lmivr-naiime type mcussage-name)
and type is typically :combined.

DSK:iMMANJH.AVOR 55 16-JAN-81

Flavors 20 I)i (las o. O ptions

Yiou may setq this variable to nil at aiiy timcQ for instance before loading somec files that
you Suspect May ba\e missing or obsolete compile -flavor -methods Ii themn.

1.9 Dcrllavor Options

[here are quite at Ie" options to detfiavor. 'Ihes are all desciibed here, although sonic are
C -r sp i'led purposes and not of' inite rest to miost u Ji.,0-1 opt io.n canl he s ri tt c ill two0

forms, either thie kes '"ord by itself', or a list of' the ke %,to(id aiid aromet'to that kevword.

Sevcral of these options dec:are things about instance ariables. I'liese op, ions canIl be given
w ith argunments w Iiich are instance variab les. orI withIiout aii aogui lien ts Inl "llhich case thev re tzr to
all of the instance variables listd at thle top of' the detliavor. Iiiis is noi necessarils all the
instance %ariables oft the componient flavors: just the ones imentioncd ill this flavi\ defflavor.
WhenCI argUrnIcnts are gis cn. thle, must he instance ariaibles that werc listed at the top oit the
defflavor: otherwise they are asmirned to be misspelled and anl error is signalled. It is legal to
declare things about instance variables inherited fr-om at component tlavor. but to do so yout mu1st
list these instance variables explicitly inl the instance s ariable list at tile top of' die defflavor.

gettable- instance -variables
Enables atuttomnatic generation of mnet Iiods for getting the al lies otit' Instance \aii ab I s. I he
niessage name is the namle of the variable. Ii the keyssord package (i.e. put a colon Ii
front of it.)

:settable - instance - variables
Enables automatic generation of methods t oi ISetting the UiluCS Of' iuiw e~I \d[riables. 'Thle
message name is ":set-" f ollowed by the namle of' die irihi Al scttable instance
\ariables are also automatically made gettable and initable.

initable - instance - variables
The instance variables listed ats argumients, or all instance \ardIabcs listed Ii this defflavor
if the keyword is given alone. are made inilabic. [his mecans that dieN caii he iii itiali/ ed
through use of' a keyword (a colon followed b the name of' the an ahle) as Ml nit 1-opt onl
argument to make-instance.

:init-keywords
The arguments are declared to be ke~ vkords iii thle iinitiail/a1tion ll pope ~t\ list Mlichb are
processed by this flavor's Jnit imethods I his is, pist used I,. error-checkiiig which looks
flor entries (presumably misspelled) Ii the intaliati o pcrtI 1N ls liLl al ie)o handled
by any component flasor of thle obijctt beiig created. icitlir as i tbe ntne a he
nor as mnit-keywords.

:default -init -plist

[ihe aigunients ire aliviriting Ike~ \%olds 'Ind1 \,tl" lio. l4ikr plopcrt -list. W\hen tile
llamr is, instanitiated,. these properties ,miid .,111 l Cs [)I Mpillnt the iitl-phist unless" lready
present. T[his allows oine cooinlent flaiii ol dI-k. tilt Ii option to .liotlici Comiponenlt
flavor. '[he value formis are oilh esaliiited s" lien iild it th'k\ aie uised. I-or example.

:defauilt-init -plist, frob-airay
(inake- array nil 'ai- q 100))

woidprovide adetault "frob array'' Imfor ntincltMi~hLi srdi o iv
oiie explicitly.

1)SKAlMMANAl] AVOR 55 16 JAN-St

Flaors 711)!,~ ii

reqUired -instance variables
I ecLires (l1,1t ill% tl~i\(tIi iiieoipoi.iiii1 ills 11i on hll)d Is itlistliiilitcd lilli ll 1111"mu t
conitainl the: I)Cilied 1Iinstance \11ie ffie f nor w0r 11 lhere 1, in1 .iinulLpt to

iiiiilx 5 \oli2 1li,i1 this optlll 1 114)l 'Il 'If 11105. \Mllli h Il'~k' 11W. 'p- IM l (d' 'I (i;
itin tlielI' I l [I l e 5 i\ desidlied J1 the an11 ()1 thli section.

Reqirled nsltaimi~e iariahies marii he Ireeli xccesed h\ miethod- just like 0 iiiA iiistance
w: nables. lie difference hemss lc istingg~ intilice \ii~cs llike Iild 1itiiig, ilti at tile
f'roii Of thle (lefilavor iis thait tile litter declares that this fitior a\isthose anaie id
,,kill take care tt initiali. fit, dIll. MJille (te limierCI dejares iaL this ftlor depenlds till

thhiail llt illt't a-t othe 1a orC 01112t h110.JAIe I1105 Led to P1iunage titil aM V. vi)Ater

flluitii rs tlile Imply.

required] - methods
IC a rgu m eIC tS arc IIlies of' mnessages '.s h ell ai, r Ii a'.or irpOriiI this amnC MUlst

handle. Ani Crnoa occur's it therIe is in1 attemlpt to instilmitc suich a this air anld it is, Larking
a imethod fu(r onie of' thewse issagcs. lii~picall'. [his (ipliiii appears in (lie defflavor I'm a
base fix. or (sec page 23).

included - flavors
IhIe argumeints are lailes of' flavors to he included in Lim taiaso. ihe ditfetence Ihet\"cn
declaring taors here mnd declango them at thc top of the defflavor i'; that w.hen
comllponent hlas rs arc ccmbined, allCthe iiICIu~ded flav1iors Come a1 t[r lie regular11 flavors.
Hilus included flavors act like defaults. [or- an example Of'?the useC Of inlu~ded fa'. urs,
consider tile ship example givrn e arlier, and suppose wke want to dcli ne a relativity - Iixin
which increases thie m~ass dependent on thle speed. We might wkritc,

(defflavor relativity-mixin () (fiovinig-object))
(defmlethod (relativity-inixin miiass) ()

(i ass (sqrt (- 1 V (I(funicall-self ':speed)

speed-of-1 ight)
2)))))

but tis would lose because any hlas r that hlad relativity - mixin as a coMponent \koumld get
moving -object right after it in its coniponent list. As a base hla'.or. moving -object

Shloul d be last inl the list of' comnpo ne nts so that other compt~il oets mi-ixed tin call replace its
methods anl(i so that daemion niethods combine tn the right order. So instlead wke \% rite,

(dupfflavor relativity-mnixin () ()
(:iicluded-flavoiis iovinlg-object))

wkhich allows relativity - mixin's methods to access moving object ifnstalle sariables stich as
mass (tile rest miass). but does lilt specc fI plaice loi moving object inl thle list (if
Comnponients. f.\ctaalb) it puts it ;t thle end, '.siere it -,ill iiuahl% be elitniiated as a

no -vanilla- flavor
1-;inless this oiption is specified. si: vanilla flavor is iu bi~ded (in Ihe senlse Of' thle
incltuded -flavors Opion). vanilla flavor pro'.ides, iamie def~ailmt iethoid" fomr tile print-

self, :describe, :which operations, get - handier - for. :eval inside - yourself, and
ucaiinside-yourself messages. See page 24.

default -handler
Hie argulniclit i'. tilmeo f'i mit finctiomm %N~hih is to be called vh en a message is; recei\ ed

DSKA I\I\NI-l AOR 5 0-.N-81

Flavors 22 .).ill,f tor Optos

for which there is no method. It Aill be cilled ith whte',er argunients the instance was
called with, including the message namC: whatsc0 ,,alucs it returns will bc retUrned. If
this option is not specified on any component Ilavor, it defaults to a function which will
signal an error.

:ordered -instance-variables
This option is mostly for esoteric internal systenl uses. The argumenlts ,are names of
instance variables which must appear first (and in this order) in all instances of this fLoiaor,
or any flavor depending on this flav or. 'lhis is Used for instance ;ariaibles \%hich are
specially known about by microcode, and in connection with the :outside -accessible-
instance-variables option. If the keyword is given alone, the argumcnts dfault to the
list of instance variables given at the top of this defflavor.

:outside -accessible -instance-variables

The arguments are instance variables which are to be accessible from "outside" of this
object, that is from functions other than methods. A macro (actually a defsubst) is
defined which takes an object of this flavor as an argument and returns the value of the
instance variable: setf may be used to set the value of the instance variable. l'lle name
of the macro is the name of the flavor concatenated with a hyphen and the name of the
instance variable. These macros are similar to the accessor macr,,s created by defstruct
(see chapter 17 of the Lisp Machine Manual.)

This feature works in two diffc.,:nt ways. depending on whether the instance variable has
been declared to have a fixed slot in all instances, via the :ordered-instance -vnrtabloq
option.

If the variable is not ordered, the position of its value cell iii the instance will have to be
computed at run time. This takes noticeable time, althotigh Ic, than actually sending a
message would take. An error will be signalled if the argument to the accessor macro is
not an instance or is an instance which does not have an instance variable with the
appropriate name. HIowever, there is no error check that the flavor of the instance is the
flavor the accessor macro was defined for, or a flavor built upon that flavor. This error
check would be too expensive.

If the variabi,. is ordered, the compiler will compile a call to the accessor macro into a
subprimitive which simply accesses that variable's assigned slot by number. T'lhis
subprimitive is only 3 or 4 times slower than car. The only error-checking performed is
to make sure that the argument is raclly an instance and is really big enough to contain
that slot. There is no check that the accessed slot really helongs to an instance \ariable of
the appropriate name. Any finctions that use these accessor macros will have to be
recompiled if the number or order of' instance \ariahbles ill the flavor is changed. The
system %ill not know altolatically to do thii,, recompilation. If you aren't \ery careful,
you nay forget to recompile something, and hmlac ai ci v h mid-to'find bug. Because Of
this problem, and because using these inacros is less elegant than sending messages, the
use of this option is discouraged. In any case the use of' these accessor macros should be
confined to die module which owns the flavor, and the "general public" should send
messages.

:select- method -order
'his is purely an efficiency hack due to the fact that currently the method-table is

I)SK :I.MMAN;I..A VOR 55 16-JAN-81

-4

Flavors 23 II.r l".tiies

searched linearl5 when i message is sent. lhe arguments are nlames of messags .hich
are frequently used or for jhicli speed is niportdinlt. Their inethods are tioned to the
fr'ont of the method tablo so that the% a e accessed more quickly.

:method -combination
I)cclares the way that ncthods froiii difl'rent flavors will be combined. Each "arguL1n"C
to this option is a list (Qipc order muessat,'el nicsxagc2 ...). lessagel. ,essag,2. etc. are
names of messages whose methods are to be combined in the declared fashion. pe is a
keyword which is a defined type of comhination: see page 25. Order is at keyword whose
interpretation is tip to y'C; typically it is either :base-flavor-first or :base-flavor-last.

Any component of it la,'or may specify the type of method combination to be used for a
particular message. If no component specifies a type of' method combiaition, then the
default type is used. nanely :daemon. If more than one component of a flavor specifies
it, then they must agree on the specification, or else an error is signalled.

documentation
The list of arguments to this option is remembered on the flavor's property list as the
documentation property. The (loose) standard for what can be in this list is as follows;
this may be extended in the Future. A string is documentation on what the flavor is for;
this may consist of a brief overview in the first line, then several paragraphs of detailed
documentation. A symbol is one of the following keywords:

:mixin A flavor that you may want to mix with others to provide a useful
feature.

:essential -mixin

A flavor that must he mixed in to all flavors of its class, or inappropriate
behavior will ensue.

lowlevel- mixin
A mixin used only to build other mixins.

:combination A combination of flavors for a specific purpose.

:special-purpose
A flavor used for some internal or kludgey purpose by a particular
program, which is not intended for general use.

This documentation can be viewed with the si:describe-flavor function (sec page 19) or
the editor's Meta-X Describe Flavor command (see page 30).

1.10 Flavor Families

'Tie following organization conventions are recommended for all programs that use flavors.

A base flavor is a flavor that defines a whole family of related flavors, all of which will have
that base flavor as one of their comiponents. Typically the base flavor includes things relevant to
the whole family. such as instance variables. required-methods and :required-instance-
variables declarations, default methods tbr certain i messages, :method -combination declarations,
and documentation (In the general proltocols and conventions of the family. Some base flavors are
complete and can be insuntiated, hut most are not instantiatable and merely serve its a base upon

I)SK:l MMAN;FILAVOR 55 16-JAN-81

llavor'i ~~24 'illIltr

which to build other tlalvars. ile base tla1%ai hi tile Jgim t"Iiliiy is ohill itam1ed AMjt- foo.

A nin-in*flavii or is a hla tr th at delinc lie! paricj iiiiiii [a aturie if' an fihlject. A liii ii cnnolt be
in stani ated, because5 it is lit it a o ill p Ic I des;c iptioan. Fa~ch Ii noda I or l'ea Liire ' it a ro(grain is
defined as at separate mixin at usable flaior can he cttitstriicted b\ choosing the niixinls for thle
desired chatracteristics anad coinii n g thei , Idong w ill the a pp a pria ie ba se tia ir. By ort gaii.ing
your tlavors this way. atL; keep separalte kaureS in sep1l-ate la or's. aI \OU can pick aind choose
amiong themn. Sometimes [lhe oider of conihining inix iu' does not matter, but often it does,
because the order af' flavaor ctmiinat iton conitrols thle order in which daeimons are in vo ked and
wrap~per's are wrapped. Such order depeindencies %.ould be documented ats part of the conventions
at' thle appropriate flamtily at' Ili ors. A mu iil n laval r hat p rov ides the mu,,, le fleature is iflen
namned ,unibe-'mixin.

If yoti are writitng at program that uses somneonle else's Facility to dto something, using that
ficilitv's flavors and miethtds. Your program might still define its owt, hlasors. inl a simple way.
I he faicility might piroi~ide at base flavor and at set af' itlixius. and the ailler can combine these it
variouis combinations depending an exactly what it wants, since thie facility probably would not
provide all possible usef'ul combinations. I :VCe if souir prisalCte im-ci has exactly thle same
components ats a pre-existing flavor, it can still be useful since you can use its :default mnit -plist

(see page 20) to select options of its component flavors and You can define ane or two mnethods to
customiZe it "just a littlc".

1.1 t Vanilla flavor

Unless yoti specify otherwise (with the :no- vanilla- flavor optioni to defflavor), every flavor
includes the "vanilla" flavor, which has no instance variables but~ provides solme basic useful
methods. '[bus, nearly every insuince may be assumted to handle the lIbllowing messages.

print -self streamn prindepih slasijp
'The object should output its printed-representation to at stream. [he printer sends tis
message when it encounters anl instance or anl eiitity. [he argumients are thle stream.i die
current depth in list-strticture (ftbr comparison with prinlevel). and whether slash ilicatian is
enablcd (prini vs princ: see page 154 in the L isp Machine Manual). Vanilla-flavor

'The flavor-narie tells yati what type of' object it is. and (he ocial-addrecss alltws wo to tell
different objects apart (prtovided the garbage collector doesin't imove themn behijnd yo~ur
back).

:descrlbe
'The object should describe itself, printing a description onto the standard - output stream.
'The describe Functioni sends this mnessage %shen it encounters ain instance or an entity.
Vaiilla-flavor Outputs thIe objCt, thle tiameI 0t' iiS flavor, and the names and values of its
instance- variables, in at reasonable format.

I)SKAl.MMAN-IIAVOR 55 1(0-JAN-81

:which-operations
The obJect should rettirti a list ol, theC itessagecs it Call handle. \'anlillx ,1or Ptier 'ites tIle
list once per flax or. and remembers it. r1iliitiing conising iiid coiiiptite 1mw'. If*I a tieA
mnethod is added. thle list is regeiieratcd thle next tine soiiieoie asks fit it.

:get handler -for operation
TIhe object shoul d retuiirn thie miietho d it uses to han'dle op~ wrll In. It* it Ii 1', Ito 1Ii e. in I'mb
that miessage. it shiould return nil. This is like thle get-handler -for Ii mid tionl (see p)age
19), bill, 1' con r'Se. YOU Call 0111y Ilse it onl objects k ti Ii to acce pt iessages.

oeval -ins ids-yoursel f fim
*ilhe arguntlent is at fil-i x"hich is c alttated inl an eux rotinient inl nhicli -pecial %ariables
x ith thle niamles of, the instance xariahles are botind to thle \Ilnesk" ofl thle n11istane %xlmables.
It works to setq one ott these special \ariaihles:, tho itistaticc \ ariaile %kill he mtodified.
Thiis i's 11.i11 ti i entded to Ilk, used fo r delbugging. \ it espec iaiIIv nsu I"Clili i et offn is
(break t): this gets you at lisp top level loop inside the enxirotiitet ot tlie mledhods of,
thie flaxvor. allow i ig on to exatne and alter inistance variables. atid in limetiotis that
use the instance variables.

:funcall Inside-yourself fiowlion &rest args
]imceiioti is applied to args itt aln emn ien rt inl "h i it spec ial v ariables xxithI the t imes of
thle intstanice 'ania h cs are- h~on iidto the uties of' thie in stance va rta hles. It xxork s to setq
otie of these Spectial Vatrtables: tile isatice vatriahfle \kil tbIe mtod iftied. ItIits is mtatinly
ititended to lbe used for debtuggitig.

1.12 Nletlod (oinbination

As was mentioned earlier, there are mnty watys to combine methods. [he wax wc have seen
is cal led t he :daemon type Of' Coi bil t ion. TO ttC Otie Of' thle otL liIrlyo se tile mrethod -
combination option to defflavor (see paige 23) to say that all die tmethods for at Certain miessagc
to this Ilavor, or it flavor btuilt onl it. shotild he cottiited in at certaiti way.

'Ilic following types of' method combitnation are supplied by tie system. It is possiblc to
define youtr Owni types of' tnetod conmhination: for in ~ormiatioti oi this, see the code. Note that
for most types oft' niet hod cotin tat ioin othle r than :d, o n vi (intst deftine thle older iil which
thle niethods are comubined, either :base- flavor- first or :base -flavor -last. In this context, base-
flavor mitus the last element ofl' tie flavo r's fills% -exp'iided list of' components.

Which method type keywords are allowed depenids ott the type of' miethod conibination
selected. Many of' themn allow only uttped tmethods. [here are lso) certain miethod types used
for internal purposes.

:daemnon '[his is thle deflitilt type of' methodtt conmbinationi. All tile :before titethods arc
cal led. thein the pima ry (iii yped) inet i md I'o r thle interi st flavor tha t has one is
called, then all the :after iletliods are called. T[he %-tile retuirned is thie valuic of

a the primary miethod.

:progn All the methods are called, itnside at progn special foii. No typedl mtethods are
allowed. Ihis means thmat ll of thle methods are called. anid the result of' the
combined method is xxhatex er thie last of the mnethods returns.

I)SKAlMMAN:I'IAVOR 55 16-JAN-81

Flavors 26 Method _olnbination

:or All the methods are called, inside an or special form. No typed methods are
allowed. This means that each of the methods is called in turn. If a method
returns a non-ni value, that value is returned and none of the rest of the
methods are called- otherwise, the next method is called. In other words, each
method is given a chance to handle the message: if it doesn't want to handle the
message, it should return nil, and the next method %%ill get a chance to try.

;and All the methods are called, inside an and special forn. No typed methods are
allowed. The basic idea is much like :or, see above.

:list Calls all the mothods and returns a list of their returned values. No typed
methods are allowed.

:inverse-list Calls each method with one argument: these arguments are successive elements of
the list which is the sole argument to the message. No typed methods are
allowed. Return! no particular value. It the result of a list-combined message is
sent back with in :inverse -list-combined message, with the same ordering and
with correspondiag method definitions, each component flavor receives the value
which came from that flavor.

Here is a table of all the method types used in the standard system (a user can add more, by
defining new forms of method-combination).

(no type) If no type is given to defmethod, a primary method is created. 'lliis is the most
common type of method.

:before
:after These are used for the before-daemon and after-daemon methods used by

:daemon method-combination.

:default If there are no untyped methods among any of the flavors being conhined. then
the :default methods (if any) are treated as if they were untyped. It' there are any
untyped methods, the :default methods arc ignored.

Typically a base-flavor (see page 23) will define some default medods for certain
of the messages understood by its family. When using the default kind of
nmcthod-combination these detautlt methods will not be called if a flavor provides
its on method. But with certain strange forms of method-combination (:or for
example) the base-flavor uses a :default method to achieve its desired effect.

:wrapper Used internally by defwrapper.

:combined Used internally for automatically-generated combined methods.

The most common form of combination is :daemon. One thing may not be clear: when do
you use a :belire daemon and when do you use an :,taer daci on' In some cases the primary
method performs a clearly-defined action and the choice is obvious: :before :launch-rocket puts
in the fuel, and :after :launch-rocket turns on the radar tracking.

In other cases the choice can be less obvious. Consider the :init message, which is sent io a
newly-created objcct. To decide what kind of daemon to use, we observe the order in which
daemon methods are called. First the :before dacmon of the highest level of' abs, action is called.
then :before daemons of successively lower levels of abstraction aie called, and finally the :before

l)SK:I.MMAN;FIAVOR 55 16-JAN-8!

1. 1.1%ors 27 Iiiplcilwii i of l'l~nis

daemnon (if any~) of the base l~isor is cailled. '[henl the pinar method is c,ilkcd .\t'te that, the
after dacnmon for [lhe lowesi level of abstractiOii IS called, I 0liowed h% the after tdicnions at
successis elsI higher le kof abstraction.

NowA. it' there is V10 interaction tiiiofie IlI these IiiiliodIs. if' tli11 dir tilis lc coiltlvll
orthoponil. thenr it doesn't matter Mihethm \onl use a before dicion or aIi after (1,winion. It
imakes a dlificienee it' (hieire is sonei1c itrctioii. Ilie Ililiction wk e ic Lilli ul Is tisijihly
done through instaince \ari,hlcs: In geni'al. instanice uirahIs are hoh thie Initfods oit diflercot
comrnponenit 11 ' so rs comuunici:ate s i tI eac odi thIer. Iln thle ca' se of' the init iiiessaige (the ui, u-phslx
canl be usedI as weCl 'Ihe imp urtant111 thing to entienber is that no ujethod kiiow s befinehand
Awhich other' itiMot' hi\e ben mixedCL in) to 110-m tIs Ilasor: a i'icthod cannot make ainy
dt55t III pt (ron5 abounit hu w t Iis flaii r has beeni comi ined, aind iii what olde r the imrouus comliip onenits
are mixed.

'I his; icaus that whlen it a:before dlaci ut i has ruin, It miiiLS st sime that nione of' tiliei methouds
for this message have run yet. Buit the :after dciron kiiuows that thle :tefore daiem ii for each oif
the other lbs tirs has run. Soi if' one Ibis tu wanlts to cons es inhuu'iiiitionl to the othIer, tlie first tone
should "trainsinit" the infoitnation Ii a :before daeitun. and the second oine shouild "reeive" it in
an :after datem in. So whlie tie :before dlacions are iiim. il nii iat it n is "tranmii tted": that is,
instance \ariahbles get set tip. [hien. Mhen the :after daemnons are run.l (lie) canl lotok at the
inIstance variables and act onl their values.

In the case of thle :init method, the :before dacrions typically set tip instance variables of the
object based ton thle init-plist. while the :after cdaenions actially doi things. rcl~ ing onl thle fact that
all of' the instance %ariahles have been initialtied b) time tine they are called.

Of course. since flavors are not hierarchically orgaiicid, thle notion of levels of abstraction is
not strictly applicable. I how eser, it remais at Usefuil wit) of' thinking about systems.

1.13 Imlplementationl or Flavors

An object which is anl Instance of at flavor is imiplemented using the dlata type dtip -instance.

T'he representation is at struciture whose fir'st word, tagped with dtp- instance - header, points to a
structtire (known to) the microcode ats anr "instance de,cu iptor') containing the internal diuil for the
flavor, and whose remaining worids are value cells contaig the values (if thle Instance variables.
TIhe instance descriptor is at defstruct which appears onl thle si~lavor property of (the flavor narne.
It comntains, among other thinigs. the nlale oif' tile flais r. tile sule of' anl instan"ce. thle tahle of
methods for hanidling miessages. aind informnation ftir accessing the instance variables.

dlefflavor creates such aI data structtire for each flavor, and links themn together accoirding to
the depenidency ielationships between flavors.

A mesisage: is sent it) anr instine simtply hy callinig it as aI functimin. with the first argurent
being the niessilge keywoid. Ih liic iot'odeMI IIitidS self In thle oieCt. hinds the nist.ince vamriahlcs
(as special cli isire varwiabls) Ili tile %.tili Cells Ili 01he inst4.1imc', id caills it dIp -select nimothod
associated with the flavor. I his dtlp select method aissociaies tIile message key w m rd it)i thc actual
fiunctiomn to he called. If' theie is only ne method. this is that method. otherwise it is an
imutomiiat ica fly-generated f't in 1 whIic cliclls thle app nip iit e ineilrods in the right order. Ifr there
are wrappers, theiy arc Ico rpioirated In to thius aiF na llygn ae u nct in.

l)SKAlMMANA:HAVOR 55 16-JAN-81

The tunction-spccilier sy nix (:method flu vor jiait opiina!- mtihod- iy'pc ill cvsage- Platt e) is
uniderstood by fdefine and icLatcd funictions. It is preferable to refer to methods this wity rather
thaln h) explicit UsC OF dihc flitor-method-symbol (scc page 15).

1.13.1 Order of Definition

There is at certain amount of' frcedorn to the order in 'AhiCh y-ou do defflavor's. defmethod's,
and detwrappers. [his freedom is designc:J to mnake it easy to load pro)grains comaniflg comnplex
fla~or structures without hiaxing to do things in at Certain order. It is considered important thlat
nlot all the methods for a flavor need be defined in dhc same file. Thus thc partitioning of at
program into files can be along modular lines.

Thec rules for the order of definition are ats follows.

Mcore a method can he defined (with delmethod or defwrapper) its flavor must have been
dcfincd (with defflavor). This makes sense because the systemn has to have a place to remember
the method, and because it has to know the instance- variab~les of the flavor if the method is to be
compiled.

When a flavor is defined (with deffilavor) it is not necessary that all of its component flavors
be defined already. [his is ito allow defflavor's to be spread between files according to the
modularity of a program, and to provide for mutually-included fla~ors (see the :included -flavors
dlefflavor option, page 21). Methods can be defined for a flavor Some Of Whose componcnt
flavors are not yet defined, however in certain cases conmpiling those mnethods will produce a
spurious warning that an instanice variable was declared special (becauseC the system did not realiz~e
it was an instance variable). In the current inmplementation these warnings may be ignored,
although that may niot always be true in the future.

The methods automatically generated by the :gettable - instance - variables and :settable -
instance -variables dlefflavor options (see page 20) are generated at the time the dlefflavor is
done.

Thei first time a flavor is instantiated, the system looks through all of the component flavors
and gafhers various information. At this point an error %%ill be signalled if not all of the
components have been dlefflavor'ed. T[his is also the time at which certain other errors are
detected, for instance lack of a required instatnce-'.ariable (see (lhe required -instance -variables
dlefflavor option, page 21). The combined methiods (see page 12) are generated at this time also,
unless they already exist. 'Ihey will already exist it' compile - flavor- methods was used, but if
those methods are obsolete because of' changes mnade to comiponent flavors sinice the compilation,
ncw combined methods will be made.

After a flavor has been instantiated, it is pos;sible to make changes to it. Tfhese changes will
affect all existing instances if possible. 'Ibis is described more Fually immediately below.

i)SK:LMMAN:EITAVOR 55 16-JAN-8I

1)15 on 29 1irtplcrrciitti'I

1.13.2 Changing a Flavor

YOu can) cII.ange ln thing about I fla aor at an%. te. You can i chanie the tla (\r, gencra I
attriuthes b% doing anth tier defflavor % ith the ,,line ilne. You cain idd m it ti f\ ilctinlds h

doing defmethod's. II you do a defmethod Aith tlhe atte \or-ttan'. n,.lgi-nne, and
(optiontal) IllethOd- t PC is an existing it tethod, 0hati method is rteplaced mlh the icie dolini ml.
Currently there is no good way to remoxe a itethod.

These changes will alwas nropagate to all fli\ors that depend tipon the changed flavor
Normally the system will propagi te the changes to all existing instances of' the changed fla or and
all flavors that depend ont it. flowecer, this is not possible when the lla\mr has been changed so
drastically that the old instances would not work properly itlh the new flaor. I his h.Ippens if
you change the number of instmce variables. which changes the si/e of' it nItsnce. It also
happens if you change the ordtr of the instance variables (and hence the storage la}out of ant
instance), or if you change the component flavors (which can chantge sexeral subtle aspects of an
instance). The s)stem does not keep a list of' all the instances it' each flax or, so it cannot find
the insutces and modif% theti to cotl'brm to the iew\ flax or definition. Instead it giees you a
warning message, on the error- output stream, to the effect that the flaxor %as changed
incompatibly and the old instances will not get the new version. [he system leaxes the old flavor
data-structure intact (the old instances will continue to point at it) and makes a new one to
contain the new version of the flavor. If a less drastic change is made. the system modifies the
original flavor data-structure, thus affecting the old instances that point at it.

One exception to this is that changes to defwrapper's are never automatically propagated.
This is because doing so is expensive and the system cannot tell whether you really changed it or
just redefined it to be the same as it was. (Note that the initial definition of a wrapper is
propagated, but redefinitions of it are not.) See the documentation of defwrapper for more
details.

1.13.3 Restrictions

There is presently an implementation restriction that when using daeions, the primary
method may return at most three values if there are any :after daemons. This is because the
combined method needs a place to remember the values while it calls the daemons. This will be
fixed some day.

In this implementation, all message names must be in the keyword package, in order for the
flavor-method-symbols (see page 15) to be unique, and for various tools in the editor to work
correctly.

l)SK:I.MMAN:'I.AVOR 55 16-JAN-81

tlavors 30 lntis

1.14 Entities

An entit is a I isp object: the entity is one of [ie primiiie dmuaIt pes pro idced by the Iisp
Machine system (the data-type function (see page III in the lisp Machine Manual) will return
dtp-entity if it is given an entity). [ntitics are just like closures: the) hame all the same
attributes and functionality. Uhe only difference between the two pritniie types is their data
type: entities are clea=rly distinguished from closures because they have a different data type. The
reason there is an important difference between tiem is that \arolots parts of the (not so primitive)
Lisp system treat them differently.

A closure is simply a kind of function. but an entity is assumed to be a inesage-receiving
object. Thus, when the Lisp pinter (see sections 18.2 and 18.4 in the lisp Machine Manual) is
given a closure, it prints a simple textual representation. but when it is handed an entity, it sends
the entity a :print-selt message, which the entity is expected to handl. [he describe function
(see page 261 in the lisp Machine Manual) als sends entities messages when it is handed them.
So when you want to make a message-receiving object out of a closur(, as described on page 7,
you should use an entity instead.

Usually there is no point in using entities instead of flavors. Fntities were introduced into
Lisp Machine Lisp before flavors were, and perhaps they would not have been had flavors already
existed. Flavors have had considerably more attention paid to efficiency and to good tools for
using them.

rrhe rest of this section is not yet written. It would explain how to create entities, and how
the defselect function is used to make a function that dispatches on its first argument at relatively
high speed.]

1.15 Useful Editor Commands

Since we presently lack an editor manual, this section briefly documents some editor
commands that are useful in conjunction with flavors.

meta-.
The meta-. (Edit Definition) command can find the definition of a flavor in the same
way that it can find the definition of a function.

Edit I)efinition can find the definition of a method if you give
(:method flavor l'pe message)

as the finction name. The keyword :method may be omitted. Completion will occur on
the flavor name and message name as usual with Edit I)finition.

meta X Describe Flavor
Asks for a flavor name in the mini-buffer and describes its characteristics. When typing
the flavor name you have completion over the names of all defined flavors (thus this
command can be used to aid in guessing the name of a flavor). [he display produced is
mouse sensitive where there are names of flavors and of methods: as usual the right-hand
mouse button gives you a menu of operations and the left-hand mouse button does the
most common operation, typically positioning the editor to the source code for the thing
you arc pointing at.

I)SK:IMMANFLAVOR 55 16-JAN-81

Flavors 31 Useful Editor Coitmands

meta-X List Methods
meta-X Edit Methods

Asks you for a message in the mini-buffer and lists all the flavors which have a method
for that message. You may type in the message name, point to it with die mouse, or let
it default to the message which is heing sent by the Lisp form the cursor is inside of.
List Methods produces a ntouse-sensitise displa allowing you to edit selected methods or
just see which flavors hae methods. %hilc idit Methods skips the display and proceeds
directly to editing the methods. As usual with this type of command, the editor
command control-. is redefined to advance the editor cursor to the next method in de
list, reading in its source file if necessary. Typing control-. while the display is on the
screen edits the first method.

meta-X List Combined Methods
meta-X Edit Combined Methods

Asks you for a message and a flavor in two mini-buffers and lists all the methods which
%ould be called if that message were sent to an instance of that fl ior. You may point to
the message and flavor with the mouse, and there is completion fir the flasr name. As
in Iist/tdit Methods, die display is mouse sensitive and the Edit version of the command
skips die display and proceeds directly to the editing phase.

list Combined Methods can be very useful for telling what a flavor will do in response to
a message. It shows you the primary method, the daemons, and the wrappers and lets
you see the code for all of them: type controf-. to get to successive ones.

I)SK:I MMAN;FIAVOR 55 16-JAN-81

Flavors 32 Index

Index

all-flavor-names Variable 14
:describe Message 24
:cval-inside-yoursclf Message 25
:tfincall-insidc-yourself Message .. 25
:get-handler-for Message 25
:print-self Message 24
:which-operations Message 25
base-flavor 23
combined-method 12
compile-flavor-methods Macro 19
declare-flavor-instance- variables Macro 18
defflavor Macro14
de fmethod Macro 14
defwrapper Macro 16
flavor 1
flavor-method-symbol 15
funcall-self Function 18
gct-handlcr-for Function 19
Instance 1
instantiatc-flavor Function 15
lexpr-funcall-self Function 18
make-instance Function 15
message 1
method 1
mixin 23
object 1
recompile-flavor Function 18
self Variable 18
set-in-instance Function 19
si:*flavor-compilations* Function 19
si:describe-flavor Function 19
symeval-in-instance Function 19

16-JAN-81

